Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D001943', 'term': 'Breast Neoplasms'}, {'id': 'D011475', 'term': 'Prosthesis Failure'}], 'ancestors': [{'id': 'D009371', 'term': 'Neoplasms by Site'}, {'id': 'D009369', 'term': 'Neoplasms'}, {'id': 'D001941', 'term': 'Breast Diseases'}, {'id': 'D012871', 'term': 'Skin Diseases'}, {'id': 'D017437', 'term': 'Skin and Connective Tissue Diseases'}, {'id': 'D011183', 'term': 'Postoperative Complications'}, {'id': 'D010335', 'term': 'Pathologic Processes'}, {'id': 'D013568', 'term': 'Pathological Conditions, Signs and Symptoms'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 1500}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'UNKNOWN', 'lastKnownStatus': 'RECRUITING', 'startDateStruct': {'date': '2019-05-28', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2019-08', 'completionDateStruct': {'date': '2025-01-01', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2019-08-13', 'studyFirstSubmitDate': '2019-06-26', 'studyFirstSubmitQcDate': '2019-06-28', 'lastUpdatePostDateStruct': {'date': '2019-08-15', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2019-07-01', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2020-05-31', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Disease free survival (DFS)', 'timeFrame': '5 years', 'description': 'Disease free survival (DFS), which defined as the time from the diagnosis of breast cancer to the confirmed time of metastatic disease, or death due to any other cause.'}], 'secondaryOutcomes': [{'measure': 'The correlation of radiomics features and tumor microenvironment', 'timeFrame': 'baseline (Completed MRI data before biopsy,surgery,neoadjuvant and radiotherapy.)', 'description': 'Radiomics is a tool to analyze tumor microenvironment characteristics based on breast MRI images.'}, {'measure': 'Lymph node metastasis', 'timeFrame': 'Baseline', 'description': 'The value of Radiomics of multiparametric MRI in predicting axillary lymph node metastasis.'}, {'measure': 'Overall survival (OS)', 'timeFrame': '5 years', 'description': 'The association between Radiomics of multiparametric MRI and overall survival (OS), which defined as the time from the beginning of diagnosis of breast cancer to the death with any causes.'}, {'measure': 'Beast cancer specific motality (BCSM)', 'timeFrame': '5 years', 'description': 'Defined as time between randomization and the time of death occur specific due to breast cancer'}, {'measure': 'Recurrence free survival (RFS)', 'timeFrame': '5 years', 'description': 'defined as time between randomization and the time of any recurrence of ipsilateral chest, breast, regional lymph node recurrence, distant metastases, or death occurred'}]}, 'oversightModule': {'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['Early-stage Breast Cancer', 'Radiomics', 'Axillary lymph node metastasis', 'Tumor microenvironment', 'Survival', 'Deep learning'], 'conditions': ['Breast Neoplasm Female', 'Early-stage Breast Cancer', 'Radiomics', 'Axillary Lymph Node', 'Survival, Prosthesis']}, 'referencesModule': {'references': [{'pmid': '34233259', 'type': 'DERIVED', 'citation': 'Yu Y, He Z, Ouyang J, Tan Y, Chen Y, Gu Y, Mao L, Ren W, Wang J, Lin L, Wu Z, Liu J, Ou Q, Hu Q, Li A, Chen K, Li C, Lu N, Li X, Su F, Liu Q, Xie C, Yao H. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. EBioMedicine. 2021 Jul;69:103460. doi: 10.1016/j.ebiom.2021.103460. Epub 2021 Jul 4.'}]}, 'descriptionModule': {'briefSummary': 'This bi-directional, multicentre study aims to assess multiparametric MRI Radiomics-based prediction model for identifying metastasis lymph nodes and prognostic prediction in breast cancer.', 'detailedDescription': 'Sensitivity for prediction of lymph node metastasis and survival of currently available prognostic scores in limited. This study proposes to establish a deep learning algorithms of multiparametric MRI radiomics and nomogram for identifying lymph node metastasis and prognostic prediction of breast cancer. The study will investigate the relationship between the radiomics and the tumor microenvironment. The study includes the construction of multiparametric MRI radiomics-based prediction model and the validation of the prediction model.'}, 'eligibilityModule': {'sex': 'FEMALE', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'maximumAge': '75 Years', 'minimumAge': '18 Years', 'genderBased': True, 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Patients who had early stage breast cancer and completed the breast MRI examination before operation,lymph node biopsy,neoadjuvant chemotherapy,and radiotherapy.', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* The primary lesion was diagnosed as invasive breast cancer\n* Patients can have regional lymph node metastasis,but no distant organ metastasis\n* Complete the breast MRI examination before treatment\n* Accept breast cancer surgery or lymph node biopsy\n* Eastern Cooperative Oncology Group performance status 0-2\n\nExclusion Criteria:\n\n* Inflammatory breast cancer\n* Accompanied with other primary malignant tumors\n* Perform surgery,radiotherapy and lymph node biopsy before breast MRI examination\n* Patients who have neoadjuvant chemotherapy\n* Patients had distant and contralateral axillary lymph node metastasis\n* The pathologic diagnosis was extensive ductal carcinoma in situ'}, 'identificationModule': {'nctId': 'NCT04003558', 'briefTitle': 'Deep Learning Algorithms for Prediction of Lymph Node Metastasis and Prognosis in Breast Cancer MRI Radiomics (RBC-01)', 'organization': {'class': 'OTHER', 'fullName': 'Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University'}, 'officialTitle': 'Deep Learning Algorithms for Prediction of Lymph Node Metastasis and Prognosis in Breast Cancer MRI Radiomics (RBC-01)', 'orgStudyIdInfo': {'id': 'SYSEC-KY-KS-2019-054-001'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Sun Yat-Sen Memorial Hospital of Sun Yat-sen University', 'description': 'The cohort of Sun Yat-Sen Memorial Hospital of Sun Yat-sen University is a training cohort.', 'interventionNames': ['Other: No interventions']}, {'label': 'Sun Yat-sen University Cancer Center', 'description': 'The cohort of Sun Yat-sen University Cancer Center is a validation cohort.', 'interventionNames': ['Other: No interventions']}, {'label': 'Tungwah Hospital of Sun Yat-Sen University', 'description': 'The cohort of Tungwah Hospital of Sun Yat-Sen University is a validation cohort.', 'interventionNames': ['Other: No interventions']}, {'label': 'Shunde hospital of southern medical university', 'description': 'The cohort of Shunde hospital of southern medical university is a validation cohort.', 'interventionNames': ['Other: No interventions']}], 'interventions': [{'name': 'No interventions', 'type': 'OTHER', 'description': 'As this is a patient registry, there are no interventions.', 'armGroupLabels': ['Shunde hospital of southern medical university', 'Sun Yat-Sen Memorial Hospital of Sun Yat-sen University', 'Sun Yat-sen University Cancer Center', 'Tungwah Hospital of Sun Yat-Sen University']}]}, 'contactsLocationsModule': {'locations': [{'zip': '523000', 'city': 'Dongguan', 'state': 'Guangdong', 'status': 'NOT_YET_RECRUITING', 'country': 'China', 'contacts': [{'name': 'Jie Ouyang, PhD', 'role': 'CONTACT', 'email': 'kitty865@163.com', 'phone': '+8613537479470'}, {'name': 'Jie Ouyang, PhD', 'role': 'PRINCIPAL_INVESTIGATOR'}], 'facility': 'Tungwah Hospital of Sun Yat-Sen University', 'geoPoint': {'lat': 23.01797, 'lon': 113.74866}}, {'zip': '528300', 'city': 'Foshan', 'state': 'Guangdong', 'status': 'RECRUITING', 'country': 'China', 'contacts': [{'name': 'Qiugen Hu, PhD', 'role': 'CONTACT', 'email': 'hu6009@163.com', 'phone': '+8613928206009'}, {'name': 'Qiugen Hu, PhD', 'role': 'PRINCIPAL_INVESTIGATOR'}, {'name': 'Xiaohong Li, MD', 'role': 'SUB_INVESTIGATOR'}], 'facility': 'Shunde hospital of southern medical university', 'geoPoint': {'lat': 23.02677, 'lon': 113.13148}}, {'zip': '510000', 'city': 'Guangzhou', 'state': 'Guangdong', 'status': 'NOT_YET_RECRUITING', 'country': 'China', 'contacts': [{'name': 'Chuanmiao Xie, PhD', 'role': 'CONTACT', 'email': 'xiechm@sysucc.org.cn', 'phone': '+8618903050011'}, {'name': 'Chuanmiao Xie, PhD', 'role': 'PRINCIPAL_INVESTIGATOR'}, {'name': 'Nian Lu, MD', 'role': 'SUB_INVESTIGATOR'}], 'facility': 'Sun Yat-sen University Cancer Center', 'geoPoint': {'lat': 23.11667, 'lon': 113.25}}, {'zip': '510000', 'city': 'Guangzhou', 'state': 'Guangdong', 'status': 'NOT_YET_RECRUITING', 'country': 'China', 'contacts': [{'name': 'Haotian Lin, PhD', 'role': 'CONTACT', 'email': 'gddlht@aliyun.com', 'phone': '+8613802793086'}, {'name': 'Wenben Chen, MD', 'role': 'CONTACT', 'email': 'Weberchan@foxmail.com', 'phone': '+8618819472798'}, {'name': 'Haotian Lin, PhD', 'role': 'PRINCIPAL_INVESTIGATOR'}, {'name': 'Wenben Chen, MD', 'role': 'SUB_INVESTIGATOR'}], 'facility': 'Zhongshan Ophthalmic Center, Sun Yat-Sen University', 'geoPoint': {'lat': 23.11667, 'lon': 113.25}}, {'zip': '510120', 'city': 'Guangzhou', 'state': 'Guangdong', 'status': 'RECRUITING', 'country': 'China', 'contacts': [{'name': 'Herui Yao, PhD', 'role': 'CONTACT', 'email': 'yaoherui@mail.sysu.edu.cn', 'phone': '+8613500018020'}, {'name': 'Herui Yao, PhD', 'role': 'PRINCIPAL_INVESTIGATOR'}, {'name': 'Yufang Yu, MD', 'role': 'SUB_INVESTIGATOR'}, {'name': 'Yujie Tan, MD', 'role': 'SUB_INVESTIGATOR'}, {'name': 'Kai Chen, MD', 'role': 'SUB_INVESTIGATOR'}], 'facility': 'Sun Yat-Sen Memorial Hospital of Sun Yat-sen University', 'geoPoint': {'lat': 23.11667, 'lon': 113.25}}], 'centralContacts': [{'name': 'Herui Yao, PhD', 'role': 'CONTACT', 'email': 'yaoherui@mail.sysu.edu.cn', 'phone': '+8613500018020'}, {'name': 'Yunfang Yu, MD', 'role': 'CONTACT', 'email': 'yuyf9@mail.sysu.edu.cn', 'phone': '+8613660238987'}], 'overallOfficials': [{'name': 'Herui Yao, PhD', 'role': 'STUDY_CHAIR', 'affiliation': 'Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University'}, {'name': 'Chuanmiao Xie, PhD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Sun Yat-sen University'}, {'name': 'Jie Ouyang, PhD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Tungwah Hospital of Sun Yat-Sen University'}, {'name': 'Qiugen Hu, PhD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Southern Medical University, China'}, {'name': 'Haotian Lin, PhD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Zhongshan Ophthalmic Center, Sun Yat-sen University'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO', 'description': 'Requests for the individual data or study documents will be considered where the proposed use aligns with public good purposes, does not conflict with other requests, and the requestor is willing to sign a data access agreement. Contact is though the corresponding author.'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University', 'class': 'OTHER'}, 'collaborators': [{'name': 'Sun Yat-sen University', 'class': 'OTHER'}, {'name': 'Tungwah Hospital of Sun Yat-Sen University', 'class': 'UNKNOWN'}, {'name': 'Southern Medical University, China', 'class': 'OTHER'}, {'name': 'Zhongshan Ophthalmic Center, Sun Yat-sen University', 'class': 'OTHER'}], 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Principal Investigator', 'investigatorFullName': 'Herui Yao', 'investigatorAffiliation': 'Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University'}}}}