Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D000083242', 'term': 'Ischemic Stroke'}, {'id': 'D001134', 'term': 'Arm Injuries'}], 'ancestors': [{'id': 'D020521', 'term': 'Stroke'}, {'id': 'D002561', 'term': 'Cerebrovascular Disorders'}, {'id': 'D001927', 'term': 'Brain Diseases'}, {'id': 'D002493', 'term': 'Central Nervous System Diseases'}, {'id': 'D009422', 'term': 'Nervous System Diseases'}, {'id': 'D014652', 'term': 'Vascular Diseases'}, {'id': 'D002318', 'term': 'Cardiovascular Diseases'}, {'id': 'D014947', 'term': 'Wounds and Injuries'}]}}, 'protocolSection': {'designModule': {'phases': ['NA'], 'studyType': 'INTERVENTIONAL', 'designInfo': {'allocation': 'RANDOMIZED', 'maskingInfo': {'masking': 'DOUBLE', 'whoMasked': ['INVESTIGATOR', 'OUTCOMES_ASSESSOR'], 'maskingDescription': "A simple random number sequence will be generated by a computer and the allocation concealment will be guaranteed using sequentially numbered, opaque sealed envelopes. The therapists responsible for randomization and allocation procedures will be independent of the blind therapists and medical doctors involved in patients' screening and treatment."}, 'primaryPurpose': 'TREATMENT', 'interventionModel': 'PARALLEL', 'interventionModelDescription': 'Randomized Clinical Trial'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 132}}, 'statusModule': {'overallStatus': 'UNKNOWN', 'lastKnownStatus': 'ACTIVE_NOT_RECRUITING', 'startDateStruct': {'date': '2014-12-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2022-06', 'completionDateStruct': {'date': '2022-12-01', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2022-06-07', 'studyFirstSubmitDate': '2018-05-08', 'studyFirstSubmitQcDate': '2018-05-08', 'lastUpdatePostDateStruct': {'date': '2022-06-08', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2018-05-21', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2018-12-01', 'type': 'ACTUAL'}}, 'outcomesModule': {'otherOutcomes': [{'measure': 'Mean duration [s]', 'timeFrame': '20 days', 'description': 'Time needed to execute standard motor tasks'}, {'measure': 'Mean velocity [cm/s]', 'timeFrame': '20 days', 'description': 'Velocity expressed to execute standard motor tasks'}, {'measure': 'Smoothness [number of submovements]', 'timeFrame': '20 days', 'description': 'Smoothness expressed to execute standard motor tasks'}, {'measure': 'Muscle synergies [n]', 'timeFrame': '20 days', 'description': 'Number of muscular patterns recognised by processing of surface electromyography data to execute standard motor tasks'}], 'primaryOutcomes': [{'measure': 'Fugl-Meyer Assessment Scale - Upper Extremity (construct: upper limb motor function)', 'timeFrame': '20 days', 'description': 'Scale range scores: 0 - 66 points. Total summed score is reported with higher values representing a better outcome.'}], 'secondaryOutcomes': [{'measure': 'Functional Independence Measure (FIM) (construct: measure for independence in the activities of daily living - ADLs)', 'timeFrame': '20 days', 'description': 'Scale range scores: 18 - 126 points. Total summed score is reported with higher values representing a better outcome.'}, {'measure': "Fugl-Meyer Assessment Scale - Range of Motion of Joints (construct: measure joints' passive range of motion)", 'timeFrame': '20 days', 'description': 'Scale range scores: 0 - 44 points. Total summed score is reported with higher values representing a better outcome.'}, {'measure': 'Fugl-Meyer Assessment Scale - Sensory Function (construct: measure of residual sensory function in upper and lower limbs affected by paresis)', 'timeFrame': '20 days', 'description': 'Scale range scores: 0 - 24 points. Total summed score is reported with higher values representing a better outcome.'}, {'measure': 'Fugl-Meyer Assessment Scale - Balance (construct: measure of impairment of standing and balance functions)', 'timeFrame': '20 days', 'description': 'Scale range scores: 0 - 14 points. Total summed score is reported with higher values representing a better outcome.'}, {'measure': 'Reaching Performance Scale (construct: measure of the ability to reach targets in the frontal space of upper limb affected by paresis)', 'timeFrame': '20 days', 'description': 'Scale range scores: 0 - 36 points. Total summed score is reported with higher values representing a better outcome.'}, {'measure': 'Modified Ashworth Scale (construct: measure of spasticity at the upper limb)', 'timeFrame': '20 days', 'description': 'Scale range scores: 0 - 5 ranks. Total summed ranks are reported with higher values representing a worse outcome.'}, {'measure': 'Box and Block Test', 'timeFrame': '20 days', 'description': 'Measure of gross motor function of the hand and upper limb'}]}, 'oversightModule': {'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['Muscle Synergies', 'MRI', 'Virtual Reality', 'Robotics'], 'conditions': ['Stroke, Ischemic', 'Upper Limb Injury', 'Rehabilitation']}, 'referencesModule': {'references': [{'pmid': '11160497', 'type': 'BACKGROUND', 'citation': "Saltiel P, Wyler-Duda K, D'Avella A, Tresch MC, Bizzi E. Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog. J Neurophysiol. 2001 Feb;85(2):605-19. doi: 10.1152/jn.2001.85.2.605."}, {'pmid': '16870725', 'type': 'BACKGROUND', 'citation': "d'Avella A, Portone A, Fernandez L, Lacquaniti F. Control of fast-reaching movements by muscle synergy combinations. J Neurosci. 2006 Jul 26;26(30):7791-810. doi: 10.1523/JNEUROSCI.0830-06.2006."}, {'pmid': '15610174', 'type': 'BACKGROUND', 'citation': 'Weiss T, Miltner WH, Liepert J, Meissner W, Taub E. Rapid functional plasticity in the primary somatomotor cortex and perceptual changes after nerve block. Eur J Neurosci. 2004 Dec;20(12):3413-23. doi: 10.1111/j.1460-9568.2004.03790.x.'}, {'pmid': '19880747', 'type': 'BACKGROUND', 'citation': 'Cheung VC, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E. Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proc Natl Acad Sci U S A. 2009 Nov 17;106(46):19563-8. doi: 10.1073/pnas.0910114106. Epub 2009 Oct 30.'}, {'pmid': '22908288', 'type': 'BACKGROUND', 'citation': 'Cheung VC, Turolla A, Agostini M, Silvoni S, Bennis C, Kasi P, Paganoni S, Bonato P, Bizzi E. Muscle synergy patterns as physiological markers of motor cortical damage. Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14652-6. doi: 10.1073/pnas.1212056109. Epub 2012 Aug 20.'}, {'pmid': '22696362', 'type': 'BACKGROUND', 'citation': 'Mehrholz J, Hadrich A, Platz T, Kugler J, Pohl M. Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2012 Jun 13;(6):CD006876. doi: 10.1002/14651858.CD006876.pub3.'}, {'pmid': '21901720', 'type': 'BACKGROUND', 'citation': 'Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2011 Sep 7;(9):CD008349. doi: 10.1002/14651858.CD008349.pub2.'}, {'pmid': '19841825', 'type': 'BACKGROUND', 'citation': 'Carpinella I, Cattaneo D, Abuarqub S, Ferrarin M. Robot-based rehabilitation of the upper limbs in multiple sclerosis: feasibility and preliminary results. J Rehabil Med. 2009 Nov;41(12):966-70. doi: 10.2340/16501977-0401.'}, {'pmid': '22623407', 'type': 'BACKGROUND', 'citation': 'Carpinella I, Cattaneo D, Bertoni R, Ferrarin M. Robot training of upper limb in multiple sclerosis: comparing protocols with or without manipulative task components. IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):351-60. doi: 10.1109/TNSRE.2012.2187462.'}, {'pmid': '6539860', 'type': 'BACKGROUND', 'citation': "Sacco RL, Wolf PA, Bharucha NE, Meeks SL, Kannel WB, Charette LJ, McNamara PM, Palmer EP, D'Agostino R. Subarachnoid and intracerebral hemorrhage: natural history, prognosis, and precursive factors in the Framingham Study. Neurology. 1984 Jul;34(7):847-54. doi: 10.1212/wnl.34.7.847."}, {'pmid': '19520997', 'type': 'BACKGROUND', 'citation': 'Pezzella FR, Picconi O, De Luca A, Lyden PD, Fiorelli M. Development of the Italian version of the National Institutes of Health Stroke Scale: It-NIHSS. Stroke. 2009 Jul;40(7):2557-9. doi: 10.1161/STROKEAHA.108.534495. Epub 2009 Jun 11.'}, {'pmid': '3503663', 'type': 'BACKGROUND', 'citation': 'Keith RA, Granger CV, Hamilton BB, Sherwin FS. The functional independence measure: a new tool for rehabilitation. Adv Clin Rehabil. 1987;1:6-18. No abstract available.'}, {'pmid': '1135616', 'type': 'BACKGROUND', 'citation': 'Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13-31.'}, {'pmid': '1202204', 'type': 'BACKGROUND', 'citation': 'Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189-98. doi: 10.1016/0022-3956(75)90026-6. No abstract available.'}, {'pmid': '6209953', 'type': 'BACKGROUND', 'citation': 'Huber W, Poeck K, Willmes K. The Aachen Aphasia Test. Adv Neurol. 1984;42:291-303. No abstract available.'}, {'pmid': '10548103', 'type': 'BACKGROUND', 'citation': 'Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature. 1999 Oct 21;401(6755):788-91. doi: 10.1038/44565.'}, {'pmid': '16752053', 'type': 'BACKGROUND', 'citation': 'Inzitari D, Carlucci G. Italian Stroke Guidelines (SPREAD): evidence and clinical practice. Neurol Sci. 2006 Jun;27 Suppl 3:S225-7. doi: 10.1007/s10072-006-0622-y.'}, {'pmid': '1675378', 'type': 'BACKGROUND', 'citation': 'Bamford J, Sandercock P, Dennis M, Burn J, Warlow C. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet. 1991 Jun 22;337(8756):1521-6. doi: 10.1016/0140-6736(91)93206-o.'}, {'pmid': '22120029', 'type': 'BACKGROUND', 'citation': 'Arya KN, Verma R, Garg RK. Estimating the minimal clinically important difference of an upper extremity recovery measure in subacute stroke patients. Top Stroke Rehabil. 2011 Oct;18 Suppl 1:599-610. doi: 10.1310/tsr18s01-599.'}, {'pmid': '19592786', 'type': 'BACKGROUND', 'citation': 'Piron L, Turolla A, Agostini M, Zucconi C, Tonin P, Piccione F, Dam M. Assessment and treatment of the upper limb by means of virtual reality in post-stroke patients. Stud Health Technol Inform. 2009;145:55-62.'}, {'pmid': '20581337', 'type': 'BACKGROUND', 'citation': 'Piron L, Turolla A, Agostini M, Zucconi CS, Ventura L, Tonin P, Dam M. Motor learning principles for rehabilitation: a pilot randomized controlled study in poststroke patients. Neurorehabil Neural Repair. 2010 Jul-Aug;24(6):501-8. doi: 10.1177/1545968310362672.'}, {'pmid': '22275705', 'type': 'BACKGROUND', 'citation': 'Basteris A, De Luca A, Sanguineti V, Solaro C, Mueller M, Carpinella I, Cattaneo D, Bertoni R, Ferrarin M. A tailored exercise of manipulation of virtual tools to treat upper limb impairment in Multiple Sclerosis. IEEE Int Conf Rehabil Robot. 2011;2011:5975509. doi: 10.1109/ICORR.2011.5975509.'}, {'pmid': '16971753', 'type': 'BACKGROUND', 'citation': 'Casadio M, Sanguineti V, Morasso PG, Arrichiello V. Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation. Technol Health Care. 2006;14(3):123-42.'}, {'pmid': '3588679', 'type': 'BACKGROUND', 'citation': 'Bohannon RW, Andrews AW. Interrater reliability of hand-held dynamometry. Phys Ther. 1987 Jun;67(6):931-3. doi: 10.1093/ptj/67.6.931.'}, {'pmid': '33674675', 'type': 'RESULT', 'citation': 'Lencioni T, Fornia L, Bowman T, Marzegan A, Caronni A, Turolla A, Jonsdottir J, Carpinella I, Ferrarin M. A randomized controlled trial on the effects induced by robot-assisted and usual-care rehabilitation on upper limb muscle synergies in post-stroke subjects. Sci Rep. 2021 Mar 5;11(1):5323. doi: 10.1038/s41598-021-84536-8.'}, {'pmid': '26737046', 'type': 'RESULT', 'citation': 'Cheung VC, Devarajan K, Severini G, Turolla A, Bonato P. Decomposing time series data by a non-negative matrix factorization algorithm with temporally constrained coefficients. Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:3496-9. doi: 10.1109/EMBC.2015.7319146.'}, {'pmid': '29861717', 'type': 'RESULT', 'citation': 'Turolla A, Venneri A, Farina D, Cagnin A, Cheung VCK. Rehabilitation Induced Neural Plasticity after Acquired Brain Injury. Neural Plast. 2018 May 10;2018:6565418. doi: 10.1155/2018/6565418. eCollection 2018. No abstract available.'}, {'pmid': '32000790', 'type': 'DERIVED', 'citation': 'Carpinella I, Lencioni T, Bowman T, Bertoni R, Turolla A, Ferrarin M, Jonsdottir J. Effects of robot therapy on upper body kinematics and arm function in persons post stroke: a pilot randomized controlled trial. J Neuroeng Rehabil. 2020 Jan 30;17(1):10. doi: 10.1186/s12984-020-0646-1.'}]}, 'descriptionModule': {'briefSummary': 'For this project the investigators ask, how the activation and organization of muscle synergies may be disrupted by brain lesions, and whether it is possible to modify synergy activations by means of specific therapies. Will be investigated whether there is a relationship between post-stroke cortical plasticity and changes in synergy activations due to a therapy.', 'detailedDescription': 'It has been widely recognized that neurorehabilitation can facilitate recovery of motor function after stroke. There has been increasing evidence suggesting that the execution of voluntary movement relies critically on the functional integration of the motor areas and the spinal circuitries. More precisely, it was suggested that the central nervous system may generate neural motor commands through a linear combination of spinal modules, each of which activates a group of muscles as a single unit (muscle synergy). The investigators hypothesize that descending motor cortical signals generate movements by combining and activating muscle synergies. With this background, the goal is to further improve the efficacy of rehabilitation utilizing knowledge on modular motor control. The investigators also seek to provide a better understanding of the links between brain activations and movements.\n\nThe project MO-SE has three aims, one primary and two secondary. The main primary aim is to test whether the use of virtual reality rehabilitation based therapies are superior in terms of clinical efficacy to conventional therapies (randomized clinica trial, RCT). The other two secondary aims of the project will be accomplished with further instrumental analysis in sub-samples of the group of patients enrolled for the RCT.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'healthyVolunteers': False, 'eligibilityCriteria': "Inclusion Criteria:\n\n* diagnosis of first stroke;\n* a score between 1 and 3 (included) at the upper limb sub-item on the Italian version of the National Institute of Health stroke scale (IT - NIHSS) (Pezzella et al., 2009)\n* a score higher than 6 out of 66 on the Fugl - Meyer upper extremity (F-M UE) scale (Fugl-Meyer et al., 1975).\n\nExclusion Criteria:\n\n* the presence of a moderate cognitive decline defined as a Mini Mental State Examination (Folstein et al., 1975) score \\< 20/30 points;\n* the finding of severe verbal comprehension deficit defined as a number of errors \\> 13 (Tau Points \\< 58/78) on the Token Test (Huber et al., 1984);\n* evidence of apraxia and visuospatial neglect interfering with upper arm movements and manipulation of simple objects in all the directions within the visual field, as assessed through neurological examination;\n* report in the patient's clinical history or evidence from the neurological examination of behavioural disturbances (i.e. delusions, aggressiveness and severe apathy/depression) that could affect compliance with the rehabilitation programs;\n* non stabilised fractures;\n* diagnosis of depression/delusion;\n* associated traumatic brain injury;\n* drug resistant epilepsy;\n* evidence of ideomotor apraxia;\n* evidence of visuospatial neglect;\n* severe impairment of verbal comprehension defined as a score higher than 13 errors on Token test (i.e. score\\<58 out of 78 Tau points)."}, 'identificationModule': {'nctId': 'NCT03530358', 'acronym': 'MOSE', 'briefTitle': 'MOdularity for SEnsory Motor Control', 'organization': {'class': 'OTHER', 'fullName': 'IRCCS San Camillo, Venezia, Italy'}, 'officialTitle': 'MOdularity for SEnsory Motor Control: Implications of Muscle Synergies in Motor Recovery After Stroke', 'orgStudyIdInfo': {'id': '2015.14'}, 'secondaryIdInfos': [{'id': '16/GR-2011-02348942', 'type': 'OTHER_GRANT', 'domain': 'Ministero della Salute, Italy'}]}, 'armsInterventionsModule': {'armGroups': [{'type': 'EXPERIMENTAL', 'label': 'Technology-aided rehabilitation', 'description': 'The technology-aided upper limb rehabilitation include reinforced feedback in virtual environment (RFVE), or robotic therapy.', 'interventionNames': ['Device: Technology-aided rehabilitation']}, {'type': 'ACTIVE_COMPARATOR', 'label': 'Conventional rehabilitation', 'description': 'The conventional upper limb rehabilitation program will be based on traditional rehabilitation techniques aimed at restoring upper limb motor functions.', 'interventionNames': ['Behavioral: Conventional rehabilitation']}], 'interventions': [{'name': 'Technology-aided rehabilitation', 'type': 'DEVICE', 'otherNames': ['Virtual Reality Rehabilitation System (VRRS)', 'Braccio di Ferro'], 'description': 'VRRS involves performing different kinds of motor tasks with the patient holding a real manipulable object in their hands while interacting with a virtual scenario.\n\n"Braccio di Ferro" task consists in center-out reaching movements and return. The subject is required to start from a central target, reach one of five peripheral targets arranged on a semi-circle with a 20 cm radius and then return to the central target.', 'armGroupLabels': ['Technology-aided rehabilitation']}, {'name': 'Conventional rehabilitation', 'type': 'BEHAVIORAL', 'description': 'The patients will be asked to perform a wide range of exercises, including: shoulder flexion-extension, abduction-adduction, internal-external rotation, circumduction, elbow flexion-extension, forearm pronation-supination, hand-digit motion. Standardized instructions and modalities will be followed when providing exercises to the patients in order to control for any variability in leading the therapy session due to the therapist.', 'armGroupLabels': ['Conventional rehabilitation']}]}, 'contactsLocationsModule': {'locations': [{'city': 'Milan', 'country': 'Italy', 'facility': 'IRCCS Fondazione Don Gnocchi Onlus', 'geoPoint': {'lat': 45.46427, 'lon': 9.18951}}, {'zip': '30126', 'city': 'Venice', 'country': 'Italy', 'facility': 'IRCCS San Camillo, Venezia, Italy', 'geoPoint': {'lat': 45.43713, 'lon': 12.33265}}], 'overallOfficials': [{'name': 'Andrea Turolla, PhD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'IRCCS San Camillo, Venezia, Italy'}]}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'IRCCS San Camillo, Venezia, Italy', 'class': 'OTHER'}, 'collaborators': [{'name': 'Fondazione Don Carlo Gnocchi Onlus', 'class': 'OTHER'}], 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'PT, PhD', 'investigatorFullName': 'Andrea Turolla', 'investigatorAffiliation': 'IRCCS San Camillo, Venezia, Italy'}}}}