Viewing Study NCT04452058


Ignite Creation Date: 2025-12-25 @ 12:06 AM
Ignite Modification Date: 2026-02-21 @ 5:55 AM
Study NCT ID: NCT04452058
Status: UNKNOWN
Last Update Posted: 2020-06-30
First Post: 2020-06-25
Is Gene Therapy: True
Has Adverse Events: False

Brief Title: CT-based Radiomic Algorithm for Assisting Surgery Decision and Predicting Immunotherapy Response of NSCLC
Sponsor:
Organization:

Raw JSON

{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D008175', 'term': 'Lung Neoplasms'}, {'id': 'D065311', 'term': 'Adenocarcinoma in Situ'}], 'ancestors': [{'id': 'D012142', 'term': 'Respiratory Tract Neoplasms'}, {'id': 'D013899', 'term': 'Thoracic Neoplasms'}, {'id': 'D009371', 'term': 'Neoplasms by Site'}, {'id': 'D009369', 'term': 'Neoplasms'}, {'id': 'D008171', 'term': 'Lung Diseases'}, {'id': 'D012140', 'term': 'Respiratory Tract Diseases'}, {'id': 'D000230', 'term': 'Adenocarcinoma'}, {'id': 'D002277', 'term': 'Carcinoma'}, {'id': 'D009375', 'term': 'Neoplasms, Glandular and Epithelial'}, {'id': 'D009370', 'term': 'Neoplasms by Histologic Type'}, {'id': 'D002278', 'term': 'Carcinoma in Situ'}, {'id': 'D065308', 'term': 'Morphological and Microscopic Findings'}, {'id': 'D013568', 'term': 'Pathological Conditions, Signs and Symptoms'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 500}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'UNKNOWN', 'lastKnownStatus': 'RECRUITING', 'startDateStruct': {'date': '2019-08-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2020-06', 'completionDateStruct': {'date': '2022-12-30', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2020-06-29', 'studyFirstSubmitDate': '2020-06-25', 'studyFirstSubmitQcDate': '2020-06-29', 'lastUpdatePostDateStruct': {'date': '2020-06-30', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2020-06-30', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2021-12-01', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Pathological subtype', 'timeFrame': '5 years', 'description': 'Pathological type of pulmonary nodules'}, {'measure': 'Objective Response Rate (ORR)', 'timeFrame': '5 years', 'description': 'Rate of ORR in all subjects for the patients who receiving immunotherapy'}, {'measure': 'Progression-free survival (PFS)', 'timeFrame': '5 years', 'description': 'From enrollment to progression or death (for any reason) in immunotherapy cohort'}], 'secondaryOutcomes': [{'measure': 'Overall survival (OS)', 'timeFrame': '5 years', 'description': 'From enrollment to death (for any reason) in immunotherapy cohort'}, {'measure': 'Clinical Benefit Rate (CBR)', 'timeFrame': '5 years', 'description': 'Rate of CBR greater than or equal to 24 weeks in all subjects'}]}, 'oversightModule': {'oversightHasDmc': True, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['Radiomics', 'Early stage', 'Pulmonary nodule', 'Pericancerous tissue', 'Immunotherapy'], 'conditions': ['Predictive Cancer Model', 'Lung Cancer', 'Preinvasive Adenocarcinoma']}, 'descriptionModule': {'briefSummary': 'The purpose of this study was to investigate whether the combined radiomic model based on radiomic features extracted from focus and perifocal area (5mm) can effectively improve prediction performance of distinguishing precancerous lesions from early-stage lung adenocarcinoma, which could assist clinical decision making for surgery indication. Besides, response and long term clinical benefit of immunotherapy of advanced NSCLC lung cancer patients could also be predicted by this strategy.', 'detailedDescription': 'Early detection and diagnosis of pulmonary nodules is clinically significant regarding optimal treatment selection and avoidance of unnecessary surgical procedures. Deferential pathology results causes widely different prognosis after standard surgery among pulmonary precancerous lesion, atypical adenomatous hyperplasia (AAH) as well as adenocarcinoma in situ (AIS), and early stage invasive adenocarcinoma (IAC). The micro-invasion of pulmonary perifocal interstitium is difficult to identify from AIS unless pathology immunohistochemical study was implemented after operation,which may causes prolonged procedure time and inappropriate surgical decision-making. Key feature-derived variables screened from CT scans via statistics and machine learning algorithms, could form a radiomics signature for disease diagnosis, tumor staging, therapy response adn patient prognosis. The purpose of this study was to investigate whether the combined radiomic signature based on the focal and perifocal(5mm)radiomic features can effectively improve predictive performance of distinguishing precancerous lesions from early stage lung adenocarcinoma. Besides, immunotherapy response is various among patients and no more than 20% of patients could benefit from it. None reliable biomarker has been found yet expect Programmed death-ligand 1 (PD-L1) expression, the only approved biomarker for immunotherapy. However recent reports suggested that patients could benefit from immunotherapy regardless of PD-L1 positive or negative. On the contrast, radiomics has show it advantages of non-invasiveness, easy-acquired and no limitation of sampling. Therefore, we applied this strategy in prediction for the immunotherapy response of advanced NSCLC lung cancer patients receiving immune checkpoint inhibitors (ICIs), which would prevent some non-benefit patient from the adverse effect of ICIs.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': "Patients in Guangdong Provincial People's hospital from March 1, 2015 to May 31,2022.\n\nPatients from Sun Yat-sen Memorial Hospital ,Guangdong Province, China ; Zhoushan Lung Cancer Institution,Zhejiang Province,China during 2019.01-2022.3\n\nAll Patients should be histologically confirmed NSCLC and those have preoperative chest CT scan.", 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* (a) that were pathologically confirmed as precancerous lesions or Stage I lung adenocarcinoma (≤3cm)\n* (b) standard Chest CT scans with or without contrast enhancement performed \\<3 months before surgery;\n* (c) availability of clinical characteristics.\n\nExclusion Criteria:\n\n* (a) preoperative therapy (neoadjuvant chemotherapy or radiotherapy) performed,\n* (b) suffering from other tumor disease before or at the same time.\n* (c) Contain other pathological components such as squamous cell lung carcinoma (SCC) or small cell lung carcinoma (SCLC) or\n* (d) poor image quality.\n\nInclusion Criteria of immunotherapy cohort:\n\n* (a) that were diagnosed as advanced NSCLC\n* (b) Both standard Chest CT scans with contrast enhancement performed \\<3 months before and after first dose of immunotherapy are available;\n* (c) availability of clinical characteristics.\n\nExclusion Criteria of immunotherapy cohort:\n\n* (a) Ever receiving pulmonary operation on the same side of the lesion.\n* (b) suffering from other tumor disease before or at the same time.\n* (c) Contain other pathological components( SCLC or lymphoma) or\n* (d) poor image quality.\n* (e) incomplete clinical data.'}, 'identificationModule': {'nctId': 'NCT04452058', 'acronym': 'TOP-RLC', 'briefTitle': 'CT-based Radiomic Algorithm for Assisting Surgery Decision and Predicting Immunotherapy Response of NSCLC', 'organization': {'class': 'OTHER', 'fullName': 'Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University'}, 'officialTitle': 'CT-based Radiomic Algorithm for Assisting Surgery Decision and Predicting Immunotherapy Response of NSCLC', 'orgStudyIdInfo': {'id': 'SYSEC-KY-KS-2019-107'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Internal cohort', 'description': "The internal cohort was retrospective enrolled in Guangdong Provincial People's hospital from March 1, 2015 to December 31,2019. Patients with single pulmonary lesion underwent preoperative chest CT scan and histologically confirmed precancerous lesions or early stage lung adenocarcinoma after thoracic surgery was included.", 'interventionNames': ['Other: Radiomic Algorithm']}, {'label': 'External cohort 1', 'description': 'The same inclusion/exclusion criteria were applied for another independent centers, Sun Yat-sen Memorial Hospital ,Guangdong Province, China, forming an external validation cohort of 73 patients', 'interventionNames': ['Other: Radiomic Algorithm']}, {'label': 'External cohort 2', 'description': 'The same inclusion/exclusion criteria were applied for another independent centers, Zhoushan Lung Cancer Institution, Zhejiang Province, China, forming second external validation cohort of 30 patients', 'interventionNames': ['Other: Radiomic Algorithm']}, {'label': 'Immune Cohort', 'description': "The internal cohort was retrospective enrolled in Guangdong Provincial People's hospital from March 1, 2015 to May 31,2020. Patients with advanced lung cancer underwent preoperative chest CT scan and histologically confirmed NSCLC before receiving immunotherapy was included.", 'interventionNames': ['Other: Radiomic Algorithm']}], 'interventions': [{'name': 'Radiomic Algorithm', 'type': 'OTHER', 'description': 'Different radiomic and machine learning strategies for radiomic features extraction, sorting features and model constriction', 'armGroupLabels': ['External cohort 1', 'External cohort 2', 'Immune Cohort', 'Internal cohort']}]}, 'contactsLocationsModule': {'locations': [{'zip': '510000', 'city': 'Guangzhou', 'state': 'Guangdong', 'status': 'RECRUITING', 'country': 'China', 'contacts': [{'name': 'Haiyu Zhou, PhD', 'role': 'CONTACT', 'email': 'lungcancer@163.com', 'phone': '+8613710342002'}], 'facility': "Guangdong Provincial People's Hospital", 'geoPoint': {'lat': 23.11667, 'lon': 113.25}}, {'zip': '510000', 'city': 'Guangzhou', 'state': 'Guangdong', 'status': 'RECRUITING', 'country': 'China', 'contacts': [{'name': 'Herui Yao, PhD', 'role': 'CONTACT', 'email': 'yaoherui@mail.sysu.edu.cn', 'phone': '+8613500018020'}, {'name': 'Yufang Yu', 'role': 'CONTACT', 'email': 'yuyf9@mail.sysu.edu.cn', 'phone': '+8613660238987'}], 'facility': 'Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University', 'geoPoint': {'lat': 23.11667, 'lon': 113.25}}, {'zip': '316000', 'city': 'Zhoushan', 'state': 'Zhejiang', 'status': 'RECRUITING', 'country': 'China', 'contacts': [{'name': 'Hanbo Cao, PhD', 'role': 'CONTACT', 'phone': '13567690608'}], 'facility': 'Zhoushan Lung Cancer Institution', 'geoPoint': {'lat': 29.98869, 'lon': 122.20488}}], 'centralContacts': [{'name': 'Haiyu Zhou, PhD', 'role': 'CONTACT', 'email': 'lungcancer@163.com', 'phone': '+8613710342002'}, {'name': 'Luyu Huang', 'role': 'CONTACT', 'email': '13lyhuang1@gmail.com'}], 'overallOfficials': [{'name': 'Haiyu Zhou, PhD', 'role': 'STUDY_CHAIR', 'affiliation': "Guangdong Provincial People's Hospital"}, {'name': 'Luyu Huang', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': "Guangdong Provincial People's Hospital"}, {'name': 'Herui Yao, PhD', 'role': 'STUDY_DIRECTOR', 'affiliation': 'Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University'}, {'name': 'Yunfang Yu', 'role': 'STUDY_DIRECTOR', 'affiliation': 'Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University'}, {'name': 'Hanbo Cao, PhD', 'role': 'STUDY_DIRECTOR', 'affiliation': 'Zhoushan Lung Cancer Institution'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO', 'description': 'The datasets used or analysed during the current study are available from the corresponding author on reasonable request.'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University', 'class': 'OTHER'}, 'collaborators': [{'name': "Guangdong Provincial People's Hospital", 'class': 'OTHER'}], 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Principal Investigator', 'investigatorFullName': 'Herui Yao', 'investigatorAffiliation': 'Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University'}}}}