Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D003922', 'term': 'Diabetes Mellitus, Type 1'}], 'ancestors': [{'id': 'D003920', 'term': 'Diabetes Mellitus'}, {'id': 'D044882', 'term': 'Glucose Metabolism Disorders'}, {'id': 'D008659', 'term': 'Metabolic Diseases'}, {'id': 'D009750', 'term': 'Nutritional and Metabolic Diseases'}, {'id': 'D004700', 'term': 'Endocrine System Diseases'}, {'id': 'D001327', 'term': 'Autoimmune Diseases'}, {'id': 'D007154', 'term': 'Immune System Diseases'}]}}, 'protocolSection': {'designModule': {'phases': ['NA'], 'studyType': 'INTERVENTIONAL', 'designInfo': {'allocation': 'RANDOMIZED', 'maskingInfo': {'masking': 'DOUBLE', 'whoMasked': ['PARTICIPANT', 'INVESTIGATOR'], 'maskingDescription': 'Subjects will not be told which meal they are eating.'}, 'primaryPurpose': 'TREATMENT', 'interventionModel': 'CROSSOVER', 'interventionModelDescription': 'Subjects will consume pre-determined meals on 6 difference occasions. There will be three categories of "study meals" consisting of:\n\n1. Regular pasta (42 grams carbohydrate per meal)\n2. High protein pasta (38 grams carbohydrate per meal)\n3. White rice (43 grams carbohydrate per meal)\n\nEach subject will consume each meal on two separate occasions in random order.'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 14}}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2018-01-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2018-09', 'completionDateStruct': {'date': '2018-08-02', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2018-09-04', 'studyFirstSubmitDate': '2017-11-29', 'studyFirstSubmitQcDate': '2017-11-29', 'lastUpdatePostDateStruct': {'date': '2018-09-05', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2017-12-05', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2018-08-02', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Delta glucose (maximum rise from baseline glucose) mg/dL', 'timeFrame': '5 hours', 'description': 'Delta glucose (maximum rise from baseline glucose) from the start of the meal to the peak continuous glucose monitoring (CGM) glucose reading (mg/dL) during the 5-hour postprandial window, compared between the three meal types.'}], 'secondaryOutcomes': [{'measure': 'Incremental area under the curve (area)', 'timeFrame': '5 hours', 'description': 'Incremental area under the curve (iAUC) glucose level for the 5 hour postprandial period adjusted for baseline glucose at the start of the meal.'}, {'measure': 'Time to peak glucose level (minutes)', 'timeFrame': '5 hours', 'description': 'Time to peak glucose level (in minutes from intervention)'}, {'measure': 'percent time glucose <70 mg/dL', 'timeFrame': '5 hours', 'description': 'In case of postprandial hypoglycemia, percent time glucose \\<70 mg/dL for the 5 hour postprandial period will be evaluated.'}]}, 'oversightModule': {'isUsExport': False, 'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['type 1 diabetes', 'pasta', 'rice', 'protein', 'carbohydrate'], 'conditions': ['Diabetes Mellitus, Type 1']}, 'referencesModule': {'references': [{'pmid': '31225739', 'type': 'DERIVED', 'citation': 'Zavitsanou S, Massa J, Deshpande S, Pinsker JE, Church MM, Andre C, Doyle Iii FJ, Michelson A, Creason J, Dassau E, Eisenberg DM. The Effect of Two Types of Pasta Versus White Rice on Postprandial Blood Glucose Levels in Adults with Type 1 Diabetes: A Randomized Crossover Trial. Diabetes Technol Ther. 2019 Sep;21(9):485-492. doi: 10.1089/dia.2019.0109. Epub 2019 Jun 21.'}]}, 'descriptionModule': {'briefSummary': 'The aim of this clinical study is to investigate and compare the postprandial glycemic response to three different meal types rich in carbohydrates, that is, white pasta, high protein pasta and white rice consumed by individuals with T1DM.', 'detailedDescription': 'The aim of this clinical study is to investigate and compare the postprandial glycemic response to three different meal types rich in carbohydrates, that is, white pasta, high protein pasta and white rice consumed by individuals with T1DM and to demonstrate that:\n\n1. The choice of carbohydrates consumed significantly affects the postprandial glycemic profile in people with type 1 diabetes and\n2. The consumption of high protein pasta will present a tighter postprandial glycemic response.\n\nPrevious studies have evaluated the effect of white pasta and rice on postprandial glycemic response in people with type 1 diabetes. With this study, we aim to expand upon these findings by ensuring that the results can still be applied to more recent commercial food products (pasta, rice), but especially to evaluate the effect of high-protein pasta when compared to regularly consumed carbohydrates (white pasta, white rice).\n\nAfter consuming the study meal, subjects will participate in an education session (a 2 hour class per each meal challenge session). Classes will be taught by a registered dietician and diabetes \\& exercise expert and, as appropriate, a culinary instructor.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'maximumAge': '75 Years', 'minimumAge': '18 Years', 'healthyVolunteers': False, 'eligibilityCriteria': "Inclusion Criteria:\n\n* Age ≥ 18 and ≤ 75 years at the time of screening.\n* Clinical diagnosis of type 1 diabetes for at least one year.\n* HbA1c ≤ 10%, as performed by point of care or central laboratory testing. A1c will be assessed at the screening visit, or if already completed within 2 months of the screening visit, the prior lab value may be used in lieu of repeating this assessment.\n* Currently using insulin-to-carbohydrate ratio to calculate meal bolus sizes, and boluses for all meals and snacks that contain ≥ 5 grams of carbohydrate.\n* Willing to refrain from taking acetaminophen products for the duration of the clinical trial. If acetaminophen is taken, subject is to avoid making any insulin dosing decisions based on CGM for at least 12 hours.\n* For females, not currently known to be pregnant. If female and sexually active, must agree to use a form of contraception to prevent pregnancy while a participant in the study. A negative urine pregnancy test will be required for all premenopausal women who are not surgically sterile at the screening visit. Subjects who become pregnant will be discontinued from the study.\n* Willing to abide by the study protocol and use study-provided devices.\n\nExclusion Criteria:\n\n* Gastrointestinal disease such as celiac disease or multiple food allergies.\n* Any form of gluten sensitivity or wheat allergy.\n* Allergies to any form of nuts and ingredients present in the study meals (tomatoes etc).\n* History of gastroparesis.\n* Pregnancy.\n* Dermatological conditions that would preclude wearing a CGM sensor.\n* Screening A1c \\> 10%.\n* Any condition that could interfere with participating in the trial, based on the investigator's judgment.\n* A recent injury to body or limb, muscular disorder, use of any medication, any carcinogenic disease, or other significant medical disorder if that injury, medication or disease in the judgment of the investigator will affect the completion of the protocol.\n* Participation in another pharmaceutical or device trial at the time of enrollment or during the study."}, 'identificationModule': {'nctId': 'NCT03362151', 'briefTitle': 'A Clinical Study to Investigate and Compare the Impact of High Protein Pasta, Lower Protein Pasta and White Rice on Blood Sugar Control in People With Type 1 Diabetes Mellitus (T1DM)', 'organization': {'class': 'OTHER', 'fullName': 'Sansum Diabetes Research Institute'}, 'officialTitle': 'A Clinical Study to Investigate and Compare the Impact of High Protein Pasta, Lower Protein Pasta and White Rice on Blood Sugar Control in People With Type 1 Diabetes Mellitus (T1DM)', 'orgStudyIdInfo': {'id': 'IRB17-1316'}}, 'armsInterventionsModule': {'armGroups': [{'type': 'EXPERIMENTAL', 'label': 'Regular pasta', 'description': 'Subjects will bolus rapid acting insulin per their carbohydrate ratio just prior to a meal of regular pasta. They will consume this meal on two separate occasions.', 'interventionNames': ['Other: Regular pasta']}, {'type': 'EXPERIMENTAL', 'label': 'High protein pasta', 'description': 'Subjects will bolus rapid acting insulin per their carbohydrate ratio just prior to a meal of high protein pasta. They will consume this meal on two separate occasions.', 'interventionNames': ['Other: High protein pasta']}, {'type': 'EXPERIMENTAL', 'label': 'White rice', 'description': 'Subjects will bolus rapid acting insulin per their carbohydrate ratio just prior to a meal of white rice. They will consume this meal on two separate occasions.', 'interventionNames': ['Other: White rice']}], 'interventions': [{'name': 'Regular pasta', 'type': 'OTHER', 'description': 'Regular pasta (Approximately 42 grams carbohydrate per meal)', 'armGroupLabels': ['Regular pasta']}, {'name': 'High protein pasta', 'type': 'OTHER', 'description': 'High protein pasta (Approximately 38 grams carbohydrate per meal)', 'armGroupLabels': ['High protein pasta']}, {'name': 'White rice', 'type': 'OTHER', 'description': 'White rice (Approximately 43 grams carbohydrate per meal)', 'armGroupLabels': ['White rice']}]}, 'contactsLocationsModule': {'locations': [{'zip': '93105', 'city': 'Santa Barbara', 'state': 'California', 'country': 'United States', 'facility': 'Sansum Diabetes Research Institute', 'geoPoint': {'lat': 34.42083, 'lon': -119.69819}}], 'overallOfficials': [{'name': 'David Eisenberg, MD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Harvard School of Public Health (HSPH)'}, {'name': 'Eyal Dassau, PhD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Harvard University'}, {'name': 'Jordan E Pinsker, MD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Sansum Diabetes Research Institute'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Sansum Diabetes Research Institute', 'class': 'OTHER'}, 'collaborators': [{'name': 'Harvard University', 'class': 'OTHER'}], 'responsibleParty': {'type': 'SPONSOR'}}}}