Viewing Study NCT07198256


Ignite Creation Date: 2025-12-24 @ 11:30 PM
Ignite Modification Date: 2025-12-25 @ 9:17 PM
Study NCT ID: NCT07198256
Status: RECRUITING
Last Update Posted: 2025-09-30
First Post: 2025-09-22
Is NOT Gene Therapy: False
Has Adverse Events: False

Brief Title: AI-assisted Diagnosis of Malignant Brain Tumors
Sponsor:
Organization:

Raw JSON

{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D005910', 'term': 'Glioma'}, {'id': 'D001932', 'term': 'Brain Neoplasms'}, {'id': 'D008223', 'term': 'Lymphoma'}], 'ancestors': [{'id': 'D018302', 'term': 'Neoplasms, Neuroepithelial'}, {'id': 'D017599', 'term': 'Neuroectodermal Tumors'}, {'id': 'D009373', 'term': 'Neoplasms, Germ Cell and Embryonal'}, {'id': 'D009370', 'term': 'Neoplasms by Histologic Type'}, {'id': 'D009369', 'term': 'Neoplasms'}, {'id': 'D009375', 'term': 'Neoplasms, Glandular and Epithelial'}, {'id': 'D009380', 'term': 'Neoplasms, Nerve Tissue'}, {'id': 'D016543', 'term': 'Central Nervous System Neoplasms'}, {'id': 'D009423', 'term': 'Nervous System Neoplasms'}, {'id': 'D009371', 'term': 'Neoplasms by Site'}, {'id': 'D001927', 'term': 'Brain Diseases'}, {'id': 'D002493', 'term': 'Central Nervous System Diseases'}, {'id': 'D009422', 'term': 'Nervous System Diseases'}, {'id': 'D008232', 'term': 'Lymphoproliferative Disorders'}, {'id': 'D008206', 'term': 'Lymphatic Diseases'}, {'id': 'D006425', 'term': 'Hemic and Lymphatic Diseases'}, {'id': 'D007160', 'term': 'Immunoproliferative Disorders'}, {'id': 'D007154', 'term': 'Immune System Diseases'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'CASE_CONTROL'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 3000}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'RECRUITING', 'startDateStruct': {'date': '2025-09-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2025-09', 'completionDateStruct': {'date': '2028-12-31', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2025-09-22', 'studyFirstSubmitDate': '2025-09-22', 'studyFirstSubmitQcDate': '2025-09-22', 'lastUpdatePostDateStruct': {'date': '2025-09-30', 'type': 'ESTIMATED'}, 'studyFirstPostDateStruct': {'date': '2025-09-30', 'type': 'ESTIMATED'}, 'primaryCompletionDateStruct': {'date': '2025-12-31', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Construct an AI-assisted diagnostic system for multiple subtypes of brain tumors based on deep learning.', 'timeFrame': '30 days', 'description': 'Construct an AI-assisted diagnostic system for multiple subtypes of brain tumors based on deep learning, mainly including glioma, metastatic tumor and lymphoma.'}]}, 'oversightModule': {'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['brain tumor', 'glioma', 'brain metastases', 'lymphoma', 'magnetic resonance imaging', 'artificial intelligence'], 'conditions': ['Gliomas', 'Brain Metastases, Adult', 'Lymphoma', 'Brain Tumor Adult']}, 'descriptionModule': {'briefSummary': 'This study aims to establish a large-scale, multi-center MRI database for malignant brain tumors. It will develop an artificial intelligence system for the segmentation and classification of multiple subtypes of brain tumors (including glioma, metastatic tumor and lymphoma et al.) using deep learning technology. This will address the issues of small sample sizes and limited classification performance in existing methods, thereby improving the accuracy of non-invasive preoperative diagnosis, reducing the need for biopsies, and having significant clinical translational value.', 'detailedDescription': 'This study is mainly based on two centers, the Second Affiliated Hospital of Zhejiang University School of Medicine and the Zhejiang Cancer Hospital. It retrospectively collects cases of malignant brain tumors (including gliomas, brain metastases, and brain lymphomas) that have been confirmed by histopathology and have preoperative multimodal MRI images (mainly including CE-T1WI and T2-FLAIR). It is expected to include 3,000 cases. Axial CE-T1WI and T2-FLAIR images of all patients were obtained on 3.0T or 1.5T magnetic resonance imaging systems. A large-scale, multi-center MRI image database for common malignant brain tumors (gliomas, brain metastases, and brain lymphomas) was planned to be constructed. To address the automatic segmentation of complex lesion tissues in brain tumors and the auxiliary diagnosis of common malignant brain tumors, a deep learning technical approach was adopted. A deep learning-based multi-subtype brain tumor segmentation and classification diagnostic method was proposed, aiming to build an image artificial intelligence-assisted diagnostic system for common malignant brain tumors and improve the accuracy of auxiliary diagnosis of common brain malignancies.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'maximumAge': '100 Years', 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Retrospectively collected cases of malignant brain tumors (including gliomas, brain metastases, and brain lymphomas) that were confirmed by histopathology and had preoperative multimodal MRI images (mainly including CE-T1WI and T2-FLAIR) over the past 10 years.', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Patients diagnosed with glioma, brain metastases, and brain lymphoma by pathology, with the patient being at least 18 years old; preoperative MRI was complete.\n\nExclusion Criteria:\n\n* Poor image quality; history of previous brain surgery or radiotherapy; accompanied by other intracranial lesions.'}, 'identificationModule': {'nctId': 'NCT07198256', 'briefTitle': 'AI-assisted Diagnosis of Malignant Brain Tumors', 'organization': {'class': 'OTHER', 'fullName': 'Second Affiliated Hospital, School of Medicine, Zhejiang University'}, 'officialTitle': 'Research on AI-assisted Diagnosis of Common Malignant Brain Tumors Based on Magnetic Resonance Imaging', 'orgStudyIdInfo': {'id': '2023-1050'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'malignant brain tumors', 'description': 'Retrospectively collected cases of malignant brain tumors (including gliomas, brain metastases, and brain lymphomas) that were confirmed by histopathology and had preoperative multimodal MRI images (mainly including CE-T1WI and T2-FLAIR) over the past 10 years'}]}, 'contactsLocationsModule': {'locations': [{'zip': '310009', 'city': 'Hangzhou', 'state': 'Zhejiang', 'status': 'RECRUITING', 'country': 'China', 'contacts': [{'name': 'Chao Wang, MD', 'role': 'CONTACT', 'email': 'wangchaosmart@zju.edu.cn', 'phone': '8613706518691'}], 'facility': '2nd Affiliated Hospital, School of Medicine, Zhejiang University', 'geoPoint': {'lat': 30.29365, 'lon': 120.16142}}, {'zip': '310022', 'city': 'Hangzhou', 'state': 'Zhejiang', 'status': 'NOT_YET_RECRUITING', 'country': 'China', 'contacts': [{'name': 'Lei Shi, MD', 'role': 'CONTACT', 'email': 'shilei@zjcc.org.cn', 'phone': '8615988872208'}], 'facility': 'Zhejiang Cancer Hospital', 'geoPoint': {'lat': 30.29365, 'lon': 120.16142}}], 'centralContacts': [{'name': 'Chao Wang, MD', 'role': 'CONTACT', 'email': 'wangchaosmart@zju.edu.cn', 'phone': '8613706518691'}]}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Second Affiliated Hospital, School of Medicine, Zhejiang University', 'class': 'OTHER'}, 'collaborators': [{'name': 'Zhejiang Cancer Hospital', 'class': 'OTHER'}], 'responsibleParty': {'type': 'SPONSOR'}}}}