Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D001281', 'term': 'Atrial Fibrillation'}], 'ancestors': [{'id': 'D001145', 'term': 'Arrhythmias, Cardiac'}, {'id': 'D006331', 'term': 'Heart Diseases'}, {'id': 'D002318', 'term': 'Cardiovascular Diseases'}, {'id': 'D010335', 'term': 'Pathologic Processes'}, {'id': 'D013568', 'term': 'Pathological Conditions, Signs and Symptoms'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'CROSS_SECTIONAL', 'observationalModel': 'CASE_ONLY'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 200}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2021-11-09', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2022-03', 'completionDateStruct': {'date': '2022-02-23', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2022-03-02', 'studyFirstSubmitDate': '2021-09-07', 'studyFirstSubmitQcDate': '2021-09-07', 'lastUpdatePostDateStruct': {'date': '2022-03-03', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2021-09-16', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2022-02-23', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Performance of AF detection', 'timeFrame': '1 day', 'description': "Performance of AF detection by an artificial intelligence (AI) solution interpreting ECG collected via Apple Watches (AI-AW), compared to physician's diagnosis from the 12 leads ECG"}], 'secondaryOutcomes': [{'measure': 'AW versus AI-AW', 'timeFrame': '1 day', 'description': 'Comparison of Apple Watch (AW) and AI-AW AF detection performance'}, {'measure': 'AI-AW versus AI-12lead', 'timeFrame': '1 day', 'description': 'Comparison of the performance of AF detection by AI-AW and AI applied to the 12-lead ECG'}]}, 'oversightModule': {'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['Atrial Fibrillation']}, 'descriptionModule': {'briefSummary': 'This observational prospective clinical investigation will evaluate the performance on an Artificial Intelligence (AI) solution interpreting ECG (electrocardiogram) collected from an Apple Watch (AI-AW) in the detection of Atrial Fibrillation (AF)', 'detailedDescription': 'Each patient hospitalized for ablation or cardioversion and having given consent to participate in the clinical investigation will have ECG recordings by Apple Watch performed simultaneously with a 12D ECG measurement by a cardiologist before and/or after treatment, in accordance with the existing patient monitoring protocol. Similarly, patients attending a rhythmology consultation or hospitalized in the cardiology department will have simultaneous ECG recordings with an Apple Watch during the scheduled routine 12D ECG recording.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '22 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': '200 participants: patients hospitalized for ablation or cardioversion or in cardiology department or patients having cardiac rhythm consultation and who have consented to participate to the study', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Patient aged 22 or older, able and willing to participate in the study\n* Patient admitted to hospital for ablation, cardioversion or cardiac electrophysiological exploration or who comes for regular rhythmology consultations or hospitalized in cardiology department\n* Patient who has read the information note and has given his or her consent before any procedure related to the study\n* Patient affiliated to social security\n\nExclusion Criteria:\n\n* Pregnant or breastfeeding women\n* Patient with a pacemaker, implantable defibrillator or cardiac resynchronisation therapy device.\n* Subject related to the investigator or any other staff member directly involved in the conduct of the study\n* Patient incapable of giving consent, minor or adult patient protected by law'}, 'identificationModule': {'nctId': 'NCT05045456', 'briefTitle': 'Observational Clinical Investigation of EKG Diagnostic Performance of the Apple Watch Augmented With an AI Algorithm', 'organization': {'class': 'INDUSTRY', 'fullName': 'Cardiologs Technologies'}, 'officialTitle': "Investigation Clinique Observationnelle Des Performances de Diagnostic Electrocardiographique de l'Apple Watch (App ECG Version 2.0) augmentée d'un Algorithme d'Intelligence Artificielle", 'orgStudyIdInfo': {'id': 'AI Watch2'}}, 'armsInterventionsModule': {'interventions': [{'name': 'Cardiologs Platform', 'type': 'DEVICE', 'otherNames': ['Apple Watch'], 'description': 'Two Apple Watch recordings (one recording with the watch on the wrist and one on the left side of the abdomen) interpreted by Cardiologs AI done simultaneously with each 12-lead ECG'}]}, 'contactsLocationsModule': {'locations': [{'zip': '91300', 'city': 'Massy', 'country': 'France', 'facility': 'Institut Cardiologique Paris Sud Hôpital Privé Jacques Cartier', 'geoPoint': {'lat': 48.72692, 'lon': 2.28301}}], 'overallOfficials': [{'name': 'Laurent Fiorina, Dr', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Institut Cardiologique Paris Sud Hôpital Privé Jacques Cartier'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Cardiologs Technologies', 'class': 'INDUSTRY'}, 'responsibleParty': {'type': 'SPONSOR'}}}}