Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D001943', 'term': 'Breast Neoplasms'}, {'id': 'D018270', 'term': 'Carcinoma, Ductal, Breast'}, {'id': 'D018275', 'term': 'Carcinoma, Lobular'}], 'ancestors': [{'id': 'D009371', 'term': 'Neoplasms by Site'}, {'id': 'D009369', 'term': 'Neoplasms'}, {'id': 'D001941', 'term': 'Breast Diseases'}, {'id': 'D012871', 'term': 'Skin Diseases'}, {'id': 'D017437', 'term': 'Skin and Connective Tissue Diseases'}, {'id': 'D044584', 'term': 'Carcinoma, Ductal'}, {'id': 'D000230', 'term': 'Adenocarcinoma'}, {'id': 'D002277', 'term': 'Carcinoma'}, {'id': 'D009375', 'term': 'Neoplasms, Glandular and Epithelial'}, {'id': 'D009370', 'term': 'Neoplasms by Histologic Type'}, {'id': 'D018299', 'term': 'Neoplasms, Ductal, Lobular, and Medullary'}]}, 'interventionBrowseModule': {'meshes': [{'id': 'D000097188', 'term': 'Radiomics'}], 'ancestors': [{'id': 'D003952', 'term': 'Diagnostic Imaging'}, {'id': 'D019937', 'term': 'Diagnostic Techniques and Procedures'}, {'id': 'D003933', 'term': 'Diagnosis'}]}}, 'protocolSection': {'designModule': {'bioSpec': {'retention': 'SAMPLES_WITHOUT_DNA', 'description': 'Fixed tissue samples'}, 'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 800}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'UNKNOWN', 'lastKnownStatus': 'ACTIVE_NOT_RECRUITING', 'startDateStruct': {'date': '2018-08-30', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2019-07', 'completionDateStruct': {'date': '2024-08-30', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2019-07-12', 'studyFirstSubmitDate': '2019-07-12', 'studyFirstSubmitQcDate': '2019-07-12', 'lastUpdatePostDateStruct': {'date': '2019-07-16', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2019-07-16', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2019-12-30', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Pathologic complete response (pCR)', 'timeFrame': 'Up to 60 months', 'description': 'Evaluating the degree of absence of residual cancer cells'}], 'secondaryOutcomes': [{'measure': 'Time to local breast recurrence', 'timeFrame': 'Up to 60 months', 'description': 'Evaluating the time until a recurrence event has occurred in the breast'}, {'measure': 'Time to distant metastasis (months)', 'timeFrame': 'Up to 60 months', 'description': 'Evaluating onset of distant metastasis'}, {'measure': 'Time to death', 'timeFrame': 'Up to 60 months', 'description': 'Evaluating time to cancer-related death'}]}, 'oversightModule': {'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['radiomics', 'pathomics', 'breast cancer', 'machine learning', 'biomarkers'], 'conditions': ['Breast Cancer', 'Invasive Ductal Breast Carcinoma', 'Invasive Lobular Breast Carcinoma']}, 'descriptionModule': {'briefSummary': 'This study examines retrospective clinical data on patients diagnosed with breast cancer and monitor their response to neoadjuvant chemotherapy, incidence of locoregional recurrence, distant metastasis, and disease-free survival. The hypothesis of this study is that breast cancer patients who achieve a pathological complete response (pCR) to neoadjuvant chemotherapy demonstrate distinct clinicopathomic biomarker signatures.', 'detailedDescription': 'The specific aims of the study are to (1) to identify clinicopathomic biomarkers from pre-treatment core biopsies that are predictive of response to neoadjuvant chemotherapy, (2) determine patterns of metastasis from primary breast cancer to other distant sites, (3) determine the rates of local recurrence in breast cancer patients, and (4) to determine if there are significant radiomic, pathomic, and clinical markers for recurrence and distant metastasis.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'samplingMethod': 'PROBABILITY_SAMPLE', 'studyPopulation': 'This study will enroll women and men with a pathologically-confirmed diagnosis of invasive breast cancer of any stage, according to the AJCC v7 criteria.', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Participants must be men and women age 18+\n* Biopsy-confirmed diagnosis of invasive breast cancer; (ER+/-, PR+/-, HER2+/-)\n* Any state of disease as described by AJCC v7 criteria\n* Participants must have received and completed neoadjuvant chemotherapy\n\nExclusion Criteria:\n\n* Participants who had other primary cancers prior to breast cancer'}, 'identificationModule': {'nctId': 'NCT04021069', 'briefTitle': 'Using Clinicopathomic Markers to Predict Neoadjuvant Chemotherapy Response in Breast Cancer', 'organization': {'class': 'OTHER', 'fullName': 'Sunnybrook Health Sciences Centre'}, 'officialTitle': 'Using Clinicopathomic Markers to Predict Neoadjuvant Chemotherapy Response in Breast Cancer', 'orgStudyIdInfo': {'id': '270-2018'}}, 'armsInterventionsModule': {'interventions': [{'name': 'Radiomic, pathomic, and clinical markers', 'type': 'DIAGNOSTIC_TEST', 'description': 'This is a non-interventional study.'}]}, 'contactsLocationsModule': {'locations': [{'zip': 'M4N3M5', 'city': 'Toronto', 'state': 'Ontario', 'country': 'Canada', 'facility': 'Sunnybrook Health Sciences Centre', 'geoPoint': {'lat': 43.70643, 'lon': -79.39864}}], 'overallOfficials': [{'name': 'William T. Tran, MRT(T), PhD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Sunnybrook Health Sciences Centre'}, {'name': 'Kasia Jerzak, M.Sc., MD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Sunnybrook Health Sciences Centre'}, {'name': 'Fang-I Lu, MD, FRCPC', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Sunnybrook Health Sciences Centre'}]}, 'ipdSharingStatementModule': {'timeFrame': 'Data will be available within 12 months of study completion.', 'ipdSharing': 'YES', 'description': 'All data will be anonymized. Digital pathology images and anonymized clinical data will be deposited into the National Cancer Institute (NCI) data sharing repository, including The Cancer Imaging Archive (TCIA). Digital pathology images will also be annotated to facilitate analysis for other investigators. Computational methods, source-codes and instructions will be deposited to the open-source coding repository, GitHub (www.github.com).', 'accessCriteria': 'Digital pathology images, anonymized clinical data, source codes, and computational methods will be deposited to open-source repositories.'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Sunnybrook Health Sciences Centre', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Radiation Therapist Clinician Scientist', 'investigatorFullName': 'Dr. William Tran', 'investigatorAffiliation': 'Sunnybrook Health Sciences Centre'}}}}