Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'CASE_ONLY'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 1000}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2020-01-17', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2024-02', 'completionDateStruct': {'date': '2020-12-31', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2024-02-22', 'studyFirstSubmitDate': '2020-03-18', 'studyFirstSubmitQcDate': '2020-04-12', 'lastUpdatePostDateStruct': {'date': '2024-02-23', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2020-04-15', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2020-08-30', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'discrimination', 'timeFrame': 'up to 3 months', 'description': 'The performance of our prediction model is evaluated with the receiver operating characteristic (ROC) curves, areas under the curves (AUCs) and concordance index (c-index).'}, {'measure': 'Calibration', 'timeFrame': 'up to 3 months', 'description': 'The calibration curves analysis is used to show error between the predicted clinical phenotype with prediction model and actual clinical phenotype.'}, {'measure': 'Net benefit', 'timeFrame': 'up to 3 months', 'description': 'Decision curve analysis was used to determine whether the models could be considered useful tools for clinical decisionmaking by comparing the net benefits at any threshold.'}]}, 'oversightModule': {'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['COVID-19 Disease']}, 'descriptionModule': {'briefSummary': 'The research aim to collect large samples of COVID-19 disease patients with clinical symptoms, laboratory and imaging examination data. Screening the biological indicators which are related to the occurrence of severe diseases. Then, investigators using artificial intelligence (AI) technology deep learning method to find a prediction model that can dynamically quantify COVID-19 disease severity.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'maximumAge': '80 Years', 'minimumAge': '18 Years', 'samplingMethod': 'PROBABILITY_SAMPLE', 'studyPopulation': 'Patients of COVID-19 disease', 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Patients of COVID-19 disease confirmed by virus nucleic acid RT-PCR and CT\n\nExclusion Criteria:\n\n* unconfirmed suspected cases\n* Patients during pregnancy and lactation\n* incomplete clinical data\n* inestigators considered patients ineligible for the trial'}, 'identificationModule': {'nctId': 'NCT04347369', 'briefTitle': 'A Retrospective Study of Neural Network Model to Dynamically Quantificate the Severity in COVID-19 Disease', 'organization': {'class': 'OTHER', 'fullName': 'Xinqiao Hospital of Chongqing'}, 'officialTitle': 'a Retrospective Study of Neural Network Model to Dynamically Quantificate the Severity in COVID-19 Disease', 'orgStudyIdInfo': {'id': 'XQonc-015'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Observed group', 'description': 'The patients who were detected COVID-19 disease by RT-PCR and CT imaging.', 'interventionNames': ['Other: other']}], 'interventions': [{'name': 'other', 'type': 'OTHER', 'description': 'clinical diagnosis', 'armGroupLabels': ['Observed group']}]}, 'contactsLocationsModule': {'locations': [{'zip': '400000', 'city': 'Chongqing', 'country': 'China', 'facility': 'Xinqiao Hospital of Chongqing', 'geoPoint': {'lat': 29.56026, 'lon': 106.55771}}]}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Xinqiao Hospital of Chongqing', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Deputy Director,Head of Oncology department, Principal Investigator, Clinical Professor', 'investigatorFullName': 'Jianguo Sun', 'investigatorAffiliation': 'Xinqiao Hospital of Chongqing'}}}}