Viewing Study NCT04661735


Ignite Creation Date: 2025-12-24 @ 10:45 PM
Ignite Modification Date: 2026-01-01 @ 9:10 AM
Study NCT ID: NCT04661735
Status: RECRUITING
Last Update Posted: 2023-09-08
First Post: 2020-12-04
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Intensive Care Unit Risk Score
Sponsor:
Organization:

Raw JSON

{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D000071064', 'term': 'Alert Fatigue, Health Personnel'}], 'ancestors': [{'id': 'D005222', 'term': 'Mental Fatigue'}, {'id': 'D005221', 'term': 'Fatigue'}, {'id': 'D012816', 'term': 'Signs and Symptoms'}, {'id': 'D013568', 'term': 'Pathological Conditions, Signs and Symptoms'}, {'id': 'D001526', 'term': 'Behavioral Symptoms'}, {'id': 'D001519', 'term': 'Behavior'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 60000}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'RECRUITING', 'startDateStruct': {'date': '2006-01-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2023-09', 'completionDateStruct': {'date': '2025-12-31', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2023-09-07', 'studyFirstSubmitDate': '2020-12-04', 'studyFirstSubmitQcDate': '2020-12-04', 'lastUpdatePostDateStruct': {'date': '2023-09-08', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2020-12-10', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2025-09-30', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Prediction of patient outcome', 'timeFrame': '2006 - 2023', 'description': 'Identification of scores with a high on impact mortality, complications and length of stay in the intensive care unit'}], 'secondaryOutcomes': [{'measure': 'Predictive model for alarm load', 'timeFrame': '2020 - 2023', 'description': 'Identification of items leading to a high alarm load measured by number of alarm per day per bed in the intensive care unit'}, {'measure': 'Predictive model for actionable alarms', 'timeFrame': '2020 - 2023', 'description': 'Identification of items leading to a high number of actionable alarms measured by number of actionable alarms per day per bed in the intensive care unit'}]}, 'oversightModule': {'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['scores', 'intensive care unit', 'patient monitoring', 'alarm management'], 'conditions': ['Mortality in Intensive Care Units', 'Complications Infection', 'Alarm Fatigue']}, 'descriptionModule': {'briefSummary': 'Subject of the planned project is the retrospective analysis of routine data of digital patient files of the Department for Anaesthesiology and Surgical Intensive Care Medicine, to test whether the predictive values of intensive care scoring systems with regard to perioperative mortality and morbidity can be improved by continuous score calculation and by using machine learning and time series analysis methods.', 'detailedDescription': "A scoring system usually consists of two parts - a score (a number reflecting the severity of the disease) and a probability model (equation indicating the probability of an event, e.g. the death of the patient in hospital). Scoring systems have been used in intensive care medicine for decades and can help to assess the effectiveness of treatment or identify comparable patients for study purposes. Scoring systems that are used in intensive care medicine are for example\n\n* Acute Physiology, Age, Chronic Health Evaluation II (APACHE II)\n* Simplified Acute Physiology Score II (SAPS II)\n* Multiple Organ Dysfunction Score (MODS)\n* Sequential Organ Failure Assessment (SOFA)\n* Logistic Organ Dysfunction System (LODS)\n* MPM II-Admission (Mortality Probability Models (MPM II)\n* Organ Dysfunction and Infection score (ODIN)\n* Three-Day Recalibrating ICU Outcomes (TRIOS)\n* Glasgow coma score (GCS)\n* Discharge Readiness Score (DRS) The above-mentioned scoring systems are already being collected regularly in the respective hospital's departments. In a recent study by Badawi et al. it could be shown that scoring systems allow more accurate predictions when calculated continuously. However, due to the patient collectives investigated, these results can only be transferred to other patient groups to a limited extent. Furthermore, only the scoring systems APACHE, SOFA and DRS were analyzed.\n\nTherefore, in the present study, all of the above scoring systems will be calculated continuously (once per minute) using routine data from the digital patient records and optimized by applying machine learning and methods of time series analysis.\n\nOn the anesthesiologically managed intensive care units of the respective hospital, there is no campus-wide standard with regard to alarm management. Accordingly, we estimate the rate of alarm fatigue (ignoring alarms due to many false alarms) to be very high. In order to optimize the alarm management, alarms from the patient monitoring devices will be evaluated retrospectively and combined with the data mentioned above to determine, for example, whether more frequent alarms are to be expected for certain types of diseases (e.g. sepsis), or scores (e.g., high APACHE score) and how the alarm limit setting can be optimized."}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Age from 18 years. The respective intensive care department carries out approximately 5000 intensive care treatments per year on persons of each sex.', 'eligibilityCriteria': 'Inclusion Criteria:\n\n\\- Patients with admission between 01.01.2006 and 30.09.2023\n\nExclusion Criteria:\n\n* Patients under 18 years of age.\n* Incomplete patient records.\n* Intensive stay of less than 24 hours.'}, 'identificationModule': {'nctId': 'NCT04661735', 'acronym': 'ICURS', 'briefTitle': 'Intensive Care Unit Risk Score', 'organization': {'class': 'OTHER', 'fullName': 'Charite University, Berlin, Germany'}, 'officialTitle': 'Retrospective Analysis - Scoring Systems in Intensive Care Medicine', 'orgStudyIdInfo': {'id': 'ICURS'}}, 'contactsLocationsModule': {'locations': [{'zip': '10117', 'city': 'Berlin', 'status': 'RECRUITING', 'country': 'Germany', 'contacts': [{'name': 'Felix Balzer, Prof. Dr. Dr.', 'role': 'CONTACT'}], 'facility': 'Charite Universtitaetsmedizin', 'geoPoint': {'lat': 52.52437, 'lon': 13.41053}}], 'centralContacts': [{'name': 'Felix Balzer, Prof', 'role': 'CONTACT', 'email': 'data-science@charite.de'}, {'name': 'Akira S Poncette, MD', 'role': 'CONTACT', 'email': 'data-science@charite.de'}], 'overallOfficials': [{'name': 'Felix Balzer, Prof', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Charite University, Berlin, Germany'}]}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Charite University, Berlin, Germany', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'MD, MSc., PhD, Professor', 'investigatorFullName': 'Felix Balzer', 'investigatorAffiliation': 'Charite University, Berlin, Germany'}}}}