Viewing Study NCT05170295


Ignite Creation Date: 2025-12-24 @ 1:29 PM
Ignite Modification Date: 2025-12-29 @ 9:02 PM
Study NCT ID: NCT05170295
Status: COMPLETED
Last Update Posted: 2021-12-27
First Post: 2021-10-25
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Noninvasive Monitoring of Cerebral Blood Flow Autoregulation
Sponsor:
Organization:

Raw JSON

{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D019586', 'term': 'Intracranial Hypertension'}, {'id': 'D001929', 'term': 'Brain Edema'}], 'ancestors': [{'id': 'D001927', 'term': 'Brain Diseases'}, {'id': 'D002493', 'term': 'Central Nervous System Diseases'}, {'id': 'D009422', 'term': 'Nervous System Diseases'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 14}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2018-04-18', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2021-12', 'completionDateStruct': {'date': '2021-04-28', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2021-12-08', 'studyFirstSubmitDate': '2021-10-25', 'studyFirstSubmitQcDate': '2021-12-08', 'lastUpdatePostDateStruct': {'date': '2021-12-27', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2021-12-27', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2021-04-28', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Cerebral Blood Flow Autoregulation (CBF AR)', 'timeFrame': 'through hospital admission, an average of 10 days', 'description': 'Cerebral Blood Flow Autoregulation (CBF AR) will be analyzed based on noninvasive recordings (bioimpedance) by using a dedicated software for this purpose (part of ICM+ program, incorporated into a WRAIR-made software (DataLyser)). In this case CBF AR is called REGx.'}], 'secondaryOutcomes': [{'measure': 'ICP Elevation', 'timeFrame': 'through hospital admission, an average of 10 days', 'description': 'Morphological analysis of REG pulse waveform in order to detect ICP elevation, and establish the correlation between REGx and REG pulse waveform morphology.'}]}, 'oversightModule': {'oversightHasDmc': False}, 'conditionsModule': {'keywords': ['neuromonitoring', 'intracranial pressure (ICP)', 'cerebral blood flow autoregulation', 'Rheoencephalography (REG)', 'noninvasive neuromonitoring', 'cerebral edema', 'autoregulation', 'Cerebral Perfusion Pressure', 'Pressure reactivity index'], 'conditions': ['Intracranial Pressure Increase', 'Cerebral Edema']}, 'referencesModule': {'references': [{'pmid': '16698860', 'type': 'BACKGROUND', 'citation': 'Steiner LA, Andrews PJ. Monitoring the injured brain: ICP and CBF. Br J Anaesth. 2006 Jul;97(1):26-38. doi: 10.1093/bja/ael110. Epub 2006 May 12.'}, {'pmid': '25614952', 'type': 'BACKGROUND', 'citation': 'Donnelly J, Aries MJ, Czosnyka M. Further understanding of cerebral autoregulation at the bedside: possible implications for future therapy. Expert Rev Neurother. 2015 Feb;15(2):169-85. doi: 10.1586/14737175.2015.996552.'}, {'pmid': '14312772', 'type': 'BACKGROUND', 'citation': 'MCHENRY LC Jr. RHEOENCEPHALOGRAPHY: A CLINICAL APPRAISAL. Neurology. 1965 Jun;15:507-17. doi: 10.1212/wnl.15.6.507. No abstract available.'}, {'pmid': '16004585', 'type': 'BACKGROUND', 'citation': 'Traczewski W, Moskala M, Kruk D, Goscinski I, Szwabowska D, Polak J, Wielgosz K. The role of computerized rheoencephalography in the assessment of normal pressure hydrocephalus. J Neurotrauma. 2005 Jul;22(7):836-43. doi: 10.1089/neu.2005.22.836.'}, {'pmid': '26334594', 'type': 'BACKGROUND', 'citation': 'Bodo M, Simovic M, Pearce F, Ahmed A, Armonda R. Correlation of rheoencephalogram and intracranial pressure: results of a rat study. Physiol Meas. 2015 Oct;36(10):N115-26. doi: 10.1088/0967-3334/36/10/N115. Epub 2015 Sep 3.'}, {'pmid': '25138226', 'type': 'BACKGROUND', 'citation': "Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Boesel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O'Phelan K, Provencio JJ, Puppo C, Riker R, Robertson C, Schmidt M, Taccone F; Neurocritical Care Society; European Society of Intensive Care Medicine. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care : a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Intensive Care Med. 2014 Sep;40(9):1189-209. doi: 10.1007/s00134-014-3369-6. Epub 2014 Aug 20."}, {'pmid': '29401746', 'type': 'BACKGROUND', 'citation': 'Harary M, Dolmans RGF, Gormley WB. Intracranial Pressure Monitoring-Review and Avenues for Development. Sensors (Basel). 2018 Feb 5;18(2):465. doi: 10.3390/s18020465.'}, {'pmid': '6374982', 'type': 'BACKGROUND', 'citation': 'Strandgaard S, Paulson OB. Cerebral autoregulation. Stroke. 1984 May-Jun;15(3):413-6. doi: 10.1161/01.str.15.3.413. No abstract available.'}, {'pmid': '14123928', 'type': 'BACKGROUND', 'citation': 'PEREZ-BORJA C, MEYER JS. A CRITICAL EVALUATION OF RHEOENCEPHALOGRAPHY IN CONTROL SUBJECTS AND IN PROVEN CASES OF CEREBROVASCULAR DISEASE. J Neurol Neurosurg Psychiatry. 1964 Feb;27(1):66-72. doi: 10.1136/jnnp.27.1.66. No abstract available.'}, {'pmid': '15712716', 'type': 'BACKGROUND', 'citation': 'Bodo M, Pearce FJ, Armonda RA. Cerebrovascular reactivity: rat studies in rheoencephalography. Physiol Meas. 2004 Dec;25(6):1371-84. doi: 10.1088/0967-3334/25/6/003.'}, {'pmid': '12751577', 'type': 'BACKGROUND', 'citation': 'Bodo M, Pearce FJ, Montgomery LD, Rosenthal M, Kubinyi G, Thuroczy G, Braisted J, Forcino D, Morrissette C, Nagy I. Measurement of brain electrical impedance: animal studies in rheoencephalography. Aviat Space Environ Med. 2003 May;74(5):506-11.'}, {'pmid': '15798222', 'type': 'BACKGROUND', 'citation': 'Bodo M, Pearce FJ, Baranyi L, Armonda RA. Changes in the intracranial rheoencephalogram at lower limit of cerebral blood flow autoregulation. Physiol Meas. 2005 Apr;26(2):S1-17. doi: 10.1088/0967-3334/26/2/001. Epub 2005 Mar 29.'}, {'pmid': '16194924', 'type': 'BACKGROUND', 'citation': 'Bodo M, Szebeni J, Baranyi L, Savay S, Pearce FJ, Alving CR, Bunger R. Cerebrovascular involvement in liposome-induced cardiopulmonary distress in pigs. J Liposome Res. 2005;15(1-2):3-14. doi: 10.1081/lpr-64523.'}, {'pmid': '17277684', 'type': 'BACKGROUND', 'citation': 'Armonda RA, Bell RS, Vo AH, Ling G, DeGraba TJ, Crandall B, Ecklund J, Campbell WW. Wartime traumatic cerebral vasospasm: recent review of combat casualties. Neurosurgery. 2006 Dec;59(6):1215-25; discussion 1225. doi: 10.1227/01.NEU.0000249190.46033.94.'}, {'pmid': '25208678', 'type': 'BACKGROUND', 'citation': "Le Roux P, Menon DK, Citerio G, Vespa P, Bader MK, Brophy GM, Diringer MN, Stocchetti N, Videtta W, Armonda R, Badjatia N, Boesel J, Chesnut R, Chou S, Claassen J, Czosnyka M, De Georgia M, Figaji A, Fugate J, Helbok R, Horowitz D, Hutchinson P, Kumar M, McNett M, Miller C, Naidech A, Oddo M, Olson D, O'Phelan K, Provencio JJ, Puppo C, Riker R, Robertson C, Schmidt M, Taccone F. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care: a statement for healthcare professionals from the Neurocritical Care Society and the European Society of Intensive Care Medicine. Neurocrit Care. 2014 Dec;21 Suppl 2(Suppl 2):S1-26. doi: 10.1007/s12028-014-0041-5."}], 'seeAlsoLinks': [{'url': 'http://www.neurosurg.cam.ac.uk/pages/ICM/about.php', 'label': 'ICM+'}, {'url': 'https://doi.org/10.1088/1742-6596/224/1/012089', 'label': 'Monitoring cerebrovascular pressure reactivity with rheoencephalography'}, {'url': 'https://iopscience.iop.org/article/10.1088/1742-6596/224/1/012088', 'label': 'In vivo cerebral blood flow autoregulation studies using rheoencephalography'}]}, 'descriptionModule': {'briefSummary': 'Rheoencephalography (REG) shows promise as a method for noninvasive neuromonitoring, because it reflects cerebrovascular reactivity. This protocol will study clinical and technical conditions required to use REG. Additionally, our goal is to study noninvasive peripheral bioimpedance pulse waveforms in order to substitute invasive SAP. A previous study demonstrated that REG can be used to detect spreading depolarization (SD), the early sign of brain metabolic disturbance. SD can be measured invasively with DC EEG amplifiers only. Our goal is to create an automatic notification function for REG monitoring indicating change of clinical conditions.', 'detailedDescription': 'Neuromonitoring of patients with severe neurological illness are detailed elsewhere. In the setting of cerebral edema, ICP monitoring is a staple of neurocritical care. Pressure AR is an important hemodynamic mechanism that protects the brain against inappropriate fluctuations in CBF in the face of changing CPP. Both static and dynamic AR have been monitored in neurocritical care to aid prognostication and contribute to individualizing optimal CPP targets in patients. Theoretically, failure of cerebral AR is associated with poor outcomes in various acute neurological diseases. Continuous bedside monitoring of autoregulation is now feasible and should be considered as a part of multimodality monitoring including measurement of pressure reactivity. A previous study documented that REG (REGx) and ICP (PRx) has high correlation in order to detect the lower limit of CBF AR. The fundamental relationships between SAP, vessel tone, cerebral blood volume and ICP form the basis for the pressure reactivity index (PRx). PRx is analogous to other time domain AR indices and is calculated as the continuous correlation between thirty consecutive time-averaged (10 s) SAP and ICP values. A positive index (positive correlation) implies impaired passive CBF AR, while a negative index (inverse correlation) implies intact, active AR. The utility and feasibility of REG as a monitoring modality is previously demonstrated and validated as a reflection of cerebrovascular reactivity. The bioimpedance amplifier was used previously at Walter Reed Army Institute of Research (WRAIR) and Naval Medical Research Center (Silver Spring, MD); and has an FDA safety clearance. It is expected that REG can predict evolving vasospasm and expanding intracranial bleeding amongst several other clinical applications.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'This study will involve patients of Neurocritical Care Department with clinical suspicion of elevated intracranial pressure.', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Intact fronto-temporal area\n* Intact lower arm area\n* Clinical suspicion of elevated intracranial pressure\n\nExclusion Criteria:\n\n* N/A'}, 'identificationModule': {'nctId': 'NCT05170295', 'briefTitle': 'Noninvasive Monitoring of Cerebral Blood Flow Autoregulation', 'organization': {'class': 'OTHER', 'fullName': 'Ochsner Health System'}, 'officialTitle': 'Noninvasive Monitoring of Cerebral Blood Flow Autoregulation', 'orgStudyIdInfo': {'id': '2018.149'}}, 'contactsLocationsModule': {'locations': [{'zip': '70121', 'city': 'New Orleans', 'state': 'Louisiana', 'country': 'United States', 'facility': 'Ochsner Health System', 'geoPoint': {'lat': 29.95465, 'lon': -90.07507}}], 'overallOfficials': [{'name': 'Louis Cannizzaro, MD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Ochsner'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'UNDECIDED'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Ochsner Health System', 'class': 'OTHER'}, 'responsibleParty': {'type': 'SPONSOR'}}}}