Viewing Study NCT07107035


Ignite Creation Date: 2025-12-24 @ 10:21 PM
Ignite Modification Date: 2025-12-31 @ 7:21 AM
Study NCT ID: NCT07107035
Status: NOT_YET_RECRUITING
Last Update Posted: 2025-08-06
First Post: 2025-07-30
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Multimodal Large Model-Driven Risk and Prognosis Assessment for Brain Metastases in Lung Cancer
Sponsor:
Organization:

Raw JSON

{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 20000}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'NOT_YET_RECRUITING', 'startDateStruct': {'date': '2025-09', 'type': 'ESTIMATED'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2025-07', 'completionDateStruct': {'date': '2030-07', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2025-07-30', 'studyFirstSubmitDate': '2025-07-30', 'studyFirstSubmitQcDate': '2025-07-30', 'lastUpdatePostDateStruct': {'date': '2025-08-06', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2025-08-06', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2027-08', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'The predictive performance of the multimodal large models', 'timeFrame': '2 years', 'description': 'Including Sensitivity (SEN), Specificity (SPE), Matthews Correlation Coefficient (MCC), Area Under the Receiver Operating Characteristic Curve (AUC) with its corresponding 95 % confidence interval (CI)'}], 'secondaryOutcomes': [{'measure': 'Progression-Free Survival (PFS)', 'timeFrame': '2 years'}, {'measure': 'Intracranial Progression-Free Survival (iPFS)', 'timeFrame': '2 years'}, {'measure': 'Overall Survival (OS)', 'timeFrame': '2 years'}]}, 'oversightModule': {'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['AI (Artificial Intelligence)', 'NSCLC Brain Metastasis']}, 'descriptionModule': {'briefSummary': "The goal of this nationwide, multicenter observational study is to develop and externally validate multimodal large models that can (1) predict the risk of brain metastases and (2) estimate long-term prognosis in patients with non-small cell lung cancer (NSCLC).\n\nThe main questions it aims to answer are:\n\n* Can a multimodal large model that fuses imaging, pathology, genomic, and clinical data accurately identify NSCLC patients at high risk of developing brain metastases?\n* Can a multimodal large model reliably forecast intracranial progression-free survival, progression-free survival, and overall survival across diverse real-world treatment settings? (ie, patients receiving distinct treatment regimens, in different treatment lines and with or without intracranial local therapies).\n\nBecause this is an observational study, there are no investigational treatments; instead, researchers will compare outcomes among patients who receive standard-of-care therapies (surgery, radiotherapy, systemic therapy) to determine how well the model's predictions align with observed events.\n\nParticipants will:\n\n* Allow use of their routinely collected clinical information, imaging (chest CT, brain MRI), pathology slides, and molecular test results for model training and validation\n* Undergo standard-of-care follow-ups\n* Complete optional quality-of-life questionnaires during scheduled visits"}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Patients are collected all over China', 'healthyVolunteers': False, 'eligibilityCriteria': "Inclusion Criteria:\n\n* Age≥18 years old;\n* KPS score≥70;\n* Pathologically confirmed lung cancer;\n* Receiving guideline-concordant standard-of-care therapy, defined as: radical surgical resection for early- to mid-stage non-small cell lung cancer (NSCLC); stereotactic radiotherapy for early-stage NSCLC deemed medically inoperable; radical chemoradiotherapy for locally advanced NSCLC; or systemic therapy for advanced-stage NSCLC.\n* Complete systemic imaging before treatment initiation, including contrast-enhanced brain MRI and contrast-enhanced chest CT;\n* Informed consent of the patient.\n\nExclusion Criteria:\n\n* Multiple primary or metastatic tumors (except early skin cancer, cervical carcinoma in situ that has been treated radically, with no recurrence or progression for more than 5 years);\n* Uncontrolled epilepsy, central nervous system disease, or history of mental disorders, judged by the researcher to potentially interfere with the signing of the informed consent form or affect patient compliance;\n* Physical examination findings, clinical laboratory abnormalities, or other uncontrolled medical conditions identified by the investigator as potentially interfering with study results interpretation or increasing the patient's risk of treatment complications\n* Pregnant or lactating women."}, 'identificationModule': {'nctId': 'NCT07107035', 'briefTitle': 'Multimodal Large Model-Driven Risk and Prognosis Assessment for Brain Metastases in Lung Cancer', 'organization': {'class': 'OTHER', 'fullName': 'Fudan University'}, 'officialTitle': 'Multimodal Large Model-Driven Risk and Prognosis Assessment for Brain Metastases in Lung Cancer: A Nationwide, Multicenter, Observational Study', 'orgStudyIdInfo': {'id': 'LCBM-AI'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Construction of AI models (retrospective cohort)', 'interventionNames': ['Other: No Intervention: Observational Cohort']}, {'label': 'Validation of AI models (prospective cohort)', 'interventionNames': ['Other: No Intervention: Observational Cohort']}], 'interventions': [{'name': 'No Intervention: Observational Cohort', 'type': 'OTHER', 'description': 'No intervention', 'armGroupLabels': ['Construction of AI models (retrospective cohort)', 'Validation of AI models (prospective cohort)']}]}, 'contactsLocationsModule': {'centralContacts': [{'name': 'Zhengfei Zhu, PhD', 'role': 'CONTACT', 'email': 'fuscczzf@163.com', 'phone': '+8618017312901'}]}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Fudan University', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Professor', 'investigatorFullName': 'Zhengfei Zhu', 'investigatorAffiliation': 'Fudan University'}}}}