Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D011014', 'term': 'Pneumonia'}], 'ancestors': [{'id': 'D012141', 'term': 'Respiratory Tract Infections'}, {'id': 'D007239', 'term': 'Infections'}, {'id': 'D008171', 'term': 'Lung Diseases'}, {'id': 'D012140', 'term': 'Respiratory Tract Diseases'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'OTHER'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 423}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'UNKNOWN', 'lastKnownStatus': 'NOT_YET_RECRUITING', 'startDateStruct': {'date': '2021-09-01', 'type': 'ESTIMATED'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2021-06', 'completionDateStruct': {'date': '2022-01-31', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2021-06-29', 'studyFirstSubmitDate': '2021-06-22', 'studyFirstSubmitQcDate': '2021-06-29', 'lastUpdatePostDateStruct': {'date': '2021-07-09', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2021-07-09', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2022-01-31', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Primary Endpoint', 'timeFrame': '1/1/2022 - 2/28/2022', 'description': '1. The Sensitivity (SE) of InferRead CT Pneumonia.AI is higher than 0.80. H0: YSE ≤ 0.80 HA: YSE \\> 0.80\n2. The Specificity (SP) of InferRead CT Pneumonia.AI is higher than 0.80. H0: YSP ≤ 0.80 HA: YSP \\> 0.80'}], 'secondaryOutcomes': [{'measure': 'Secondary Endpoint', 'timeFrame': '1/1/2022 - 2/28/2022', 'description': 'The Average Per Case Processing Time of InferRead CT Pneumonia.AI is lower than Time-to-open-exam in the standard of care\n\nH0: Per Case Processing Time ≥ Time-to-open-exam HA: Per Case Processing Time \\< Time-to-open-exam\n\nThe Average Per Case Processing Time of InferRead CT Pneumonia.AI includes the time to receive the DICOM exam and the shows AI results on the studylist. The standard of care time-to-open-exam is defined as the time from the initial scan of the patient to the time when the radiologist first opens the exam for review.'}]}, 'oversightModule': {'isUsExport': False, 'isFdaRegulatedDrug': False, 'isUnapprovedDevice': True, 'isFdaRegulatedDevice': True}, 'conditionsModule': {'conditions': ['Pneumonia']}, 'descriptionModule': {'briefSummary': 'A retrospective, blineded, multicenter study of the InferRead CT Pneumonia.AI to evaluate the performance in identifying non-contrast chest CT scans containing pneumonia findings.', 'detailedDescription': "This is a retrospective, blinded, multicenter study for the InferRead CT Pneumonia.AI. The primary endpoint will evaluate the software's performance in identifying non-contrast chest CT scans containing pneumonia. It will evaluate InferRead CT Pneumonia.AI in terms of sensitivity and specificity with respect to a ground truth, as established by trained thoracic radiologists, in the detection of penumonia. In addition, the study will compare time to notification for the InferRead CT Pneumonia.AI software with respect to the time to notification for the standard of care as established from available radiological reports.\n\n1. To evaluate the performance of InferRead CT Pneumonia.AI.\n2. To evaluate the effect of different factors such as CT manufacturer, CT scanning protocols and patient characteristics on the performance of InferRead CT Pneumonia.AI"}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'samplingMethod': 'PROBABILITY_SAMPLE', 'studyPopulation': 'This retrospective study will be used to assess the performance of the subject device. The principal investigator will collect DICOM data and relevant clinical information based on the selection criteria. DICOM will be de-identified of PHI and stored in a secure location.\n\nThe validation dataset will contain non-contrast chest CT scans from patients in the United States that are either negative or have confirmed pneumonia (viral or bacterial). Data will come from at least 3 hospitals and cover a variety of data attributes.', 'healthyVolunteers': True, 'eligibilityCriteria': "Inclusion Criteria:\n\n1. Non-contrast chest CT DICOM scans\n2. Contains both lung lobes\n3. Slice thickness is less than 3 mm.\n\nExclusion Criteria:\n\n1. Incomplete scan or corrupted scan\n2. Irregular scanning, increased intrapulmonary density due to insufficient inspiration, and respiratory artifacts affecting the physician's judgment.\n3. Altered or absent lung morphology in the postoperative patient."}, 'identificationModule': {'nctId': 'NCT04955704', 'briefTitle': 'Performance Study for InferRead CT Pneumonia.AI', 'organization': {'class': 'INDUSTRY', 'fullName': 'Infervision'}, 'officialTitle': 'Performance Study for InferRead CT Pneumonia.AI', 'orgStudyIdInfo': {'id': 'PNEUMONIA06142021'}}, 'armsInterventionsModule': {'interventions': [{'name': 'InferRead CT Pneumonia.AI', 'type': 'DEVICE', 'description': 'InferRead CT Pneumonia.AI reads chest CT DICOM images from medical imaging storage devices and triages cases by detecting pneumonia lesions and then flagging suspected cases in the study list. InferRead CT Pneumonia.AI is a tool to assist clinicians and it does not replace the interpretation and diagnosis by clinicians.'}]}, 'contactsLocationsModule': {'centralContacts': [{'name': 'Frank Wu', 'role': 'CONTACT', 'email': 'frank.wu@infervision.ai', 'phone': '8579981888'}]}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Infervision', 'class': 'INDUSTRY'}, 'collaborators': [{'name': 'University of Maryland, College Park', 'class': 'OTHER'}], 'responsibleParty': {'type': 'SPONSOR'}}}}