Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D006528', 'term': 'Carcinoma, Hepatocellular'}], 'ancestors': [{'id': 'D000230', 'term': 'Adenocarcinoma'}, {'id': 'D002277', 'term': 'Carcinoma'}, {'id': 'D009375', 'term': 'Neoplasms, Glandular and Epithelial'}, {'id': 'D009370', 'term': 'Neoplasms by Histologic Type'}, {'id': 'D009369', 'term': 'Neoplasms'}, {'id': 'D008113', 'term': 'Liver Neoplasms'}, {'id': 'D004067', 'term': 'Digestive System Neoplasms'}, {'id': 'D009371', 'term': 'Neoplasms by Site'}, {'id': 'D004066', 'term': 'Digestive System Diseases'}, {'id': 'D008107', 'term': 'Liver Diseases'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 200}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'UNKNOWN', 'lastKnownStatus': 'ENROLLING_BY_INVITATION', 'startDateStruct': {'date': '2018-12-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2023-02', 'completionDateStruct': {'date': '2024-12-01', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2023-02-09', 'studyFirstSubmitDate': '2022-09-14', 'studyFirstSubmitQcDate': '2022-09-14', 'lastUpdatePostDateStruct': {'date': '2023-02-13', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2022-09-16', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2023-12-01', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Objective response rate', 'timeFrame': '3 months', 'description': 'Tumor response are evaluated to the Modified Response Evaluation Criteria in Solid Tumors (mRECIST).'}], 'secondaryOutcomes': [{'measure': 'Overall survival', 'timeFrame': '1 year', 'description': 'Overall survival was defined as the time from treatment to death for any reason.'}, {'measure': 'Progression free survival', 'timeFrame': '1 year', 'description': 'Progression free survival was defined as the time from treatment to first progression or death.'}]}, 'oversightModule': {'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['Hepatocellular Carcinoma', 'systemic therapy', 'immunotherapy', 'tyrosine kinase inhibitor', 'treatment response', 'radiomics', 'clinical characteristics', 'machine learning'], 'conditions': ['Hepatocellular Carcinoma Non-resectable', 'Effect of Drug']}, 'referencesModule': {'references': [{'pmid': '30970190', 'type': 'BACKGROUND', 'citation': 'Villanueva A. Hepatocellular Carcinoma. N Engl J Med. 2019 Apr 11;380(15):1450-1462. doi: 10.1056/NEJMra1713263. No abstract available.'}, {'pmid': '34764464', 'type': 'BACKGROUND', 'citation': 'Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, Pikarsky E, Zhu AX, Finn RS. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022 Mar;19(3):151-172. doi: 10.1038/s41571-021-00573-2. Epub 2021 Nov 11.'}, {'pmid': '31900465', 'type': 'BACKGROUND', 'citation': "Chen B, Garmire L, Calvisi DF, Chua MS, Kelley RK, Chen X. Harnessing big 'omics' data and AI for drug discovery in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2020 Apr;17(4):238-251. doi: 10.1038/s41575-019-0240-9. Epub 2020 Jan 3."}, {'pmid': '33708638', 'type': 'BACKGROUND', 'citation': 'Chen M, Cao J, Hu J, Topatana W, Li S, Juengpanich S, Lin J, Tong C, Shen J, Zhang B, Wu J, Pocha C, Kudo M, Amedei A, Trevisani F, Sung PS, Zaydfudim VM, Kanda T, Cai X. Clinical-Radiomic Analysis for Pretreatment Prediction of Objective Response to First Transarterial Chemoembolization in Hepatocellular Carcinoma. Liver Cancer. 2021 Feb;10(1):38-51. doi: 10.1159/000512028. Epub 2021 Jan 7.'}, {'pmid': '34256065', 'type': 'BACKGROUND', 'citation': 'Bruix J, Chan SL, Galle PR, Rimassa L, Sangro B. Systemic treatment of hepatocellular carcinoma: An EASL position paper. J Hepatol. 2021 Oct;75(4):960-974. doi: 10.1016/j.jhep.2021.07.004. Epub 2021 Jul 10.'}, {'pmid': '31907954', 'type': 'BACKGROUND', 'citation': 'Spann A, Yasodhara A, Kang J, Watt K, Wang B, Goldenberg A, Bhat M. Applying Machine Learning in Liver Disease and Transplantation: A Comprehensive Review. Hepatology. 2020 Mar;71(3):1093-1105. doi: 10.1002/hep.31103. Epub 2020 Mar 6.'}, {'pmid': '34950180', 'type': 'BACKGROUND', 'citation': 'Lee IC, Huang JY, Chen TC, Yen CH, Chiu NC, Hwang HE, Huang JG, Liu CA, Chau GY, Lee RC, Hung YP, Chao Y, Ho SY, Huang YH. Evolutionary Learning-Derived Clinical-Radiomic Models for Predicting Early Recurrence of Hepatocellular Carcinoma after Resection. Liver Cancer. 2021 Sep 20;10(6):572-582. doi: 10.1159/000518728. eCollection 2021 Nov.'}]}, 'descriptionModule': {'briefSummary': 'As the most common type of primary liver cancer, hepatocellular carcinoma (HCC) has become a big challenge all over the world. Most patients are not available to curative resection when first diagnosed. There are a variety of treatment options for advanced HCC. However, due to the heterogeneity of HCC, the overall response rate (ORR) is not high for systemic therapies. Therefore, appropriate selection of patients who are suitable for individual systemic therapies is important for clinical decision-making.', 'detailedDescription': 'Although major achievements have been acquired in diagnosis and treatment, the prognosis of hepatocellular carcinoma (HCC) is still unsatisfactory. Liver resection remains the main curative treatment for HCC, but most patients are at an advanced stage when first diagnosed, leading to be not available to curative therapies. There is a variety of treatment options for advanced HCC, such as transarterial chemoembolization (TACE), hepatic artery infusion chemotherapy (HAIC), targeted therapy (sorafenib and lenvatinib), immunotherapy, and the combination of different therapies. However, due to the heterogeneity of HCC, different patients respond differently to systemic therapies. The the overall response rate (ORR) is not satisfactory and most patients can not benefit from the systemic therapies. There is an urgent need to identify patients who are likely to have positive response to systemic therapies at the beginning before treatment. Therefore ,we want to collect the clinical information of patients with advanced HCC treated with systemic therapies, including demographic data , laboratory index, histological features, radiomics data. Patients are followed-up at a interval of 1 month after treatment, and the ORR, overall survival (OS), progression-free survival (PFS) are recorded. Then the treatment response are evaluated and the relationship between the clinical data and efficacy of systemic therapies are explored by machine learning methods. Then models based on clinical features or radiomics features are developed to predict response to different systemic therapies.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'maximumAge': '80 Years', 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Patients with unresectable HCC who received systemic therapies.', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* clinically or pathologically diagnosed HCC\n* Eastern Cooperative Oncology Group performance status (ECOG-PS) 0-2\n* Child-Pugh score of ≤7\n* complete clinical and follow-up information\n* evaluable efficacy after treatment\n* age between 18-80 years old\n\nExclusion Criteria:\n\n* with other malignancies\n* Eastern Cooperative Oncology Group performance status (ECOG-PS) \\>2\n* Child-Pugh score of \\>7\n* incomplete clinical data\n* lost to follow up\n* unevaluable efficacy after treatment\n* age \\<18 years old or \\>80 years old'}, 'identificationModule': {'nctId': 'NCT05543304', 'briefTitle': 'Predicting Response to Systemic Therapies for Hepatocellular Carcinoma(HCC)', 'organization': {'class': 'OTHER', 'fullName': 'First Affiliated Hospital of Wenzhou Medical University'}, 'officialTitle': 'Predicting Response to Systemic Therapies for Hepatocellular Carcinoma(HCC) Based on Clinical Variables and Radiomics Data With Machine Learning Methods', 'orgStudyIdInfo': {'id': 'efficacy of systemic therapies'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'patients with response to systemic therapies', 'description': 'Patients shown complete response (CR) and partial response (PR) after treatments. The clinical data and radiomics data are collected through electronic medical record system.', 'interventionNames': ['Diagnostic Test: radiological evaluation']}, {'label': 'patients with no response to systemic therapies', 'description': 'Patients shown progressive disease (PD) and stable disease (SD) after treatments. The clinical data and radiomics data are collected through electronic medical record system.', 'interventionNames': ['Diagnostic Test: radiological evaluation']}], 'interventions': [{'name': 'radiological evaluation', 'type': 'DIAGNOSTIC_TEST', 'description': 'All patients with advanced HCC receive imaging evaluation before and after systemic treatments to assess the development of diseases.', 'armGroupLabels': ['patients with no response to systemic therapies', 'patients with response to systemic therapies']}]}, 'contactsLocationsModule': {'locations': [{'zip': '325000', 'city': 'Wenzhou', 'state': 'Zhejiang', 'country': 'China', 'facility': 'Gang Chen', 'geoPoint': {'lat': 27.99942, 'lon': 120.66682}}], 'overallOfficials': [{'name': 'Gang Chen, MD,PhD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'First Affiliated Hospital of Wenzhou Medical University'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'First Affiliated Hospital of Wenzhou Medical University', 'class': 'OTHER'}, 'collaborators': [{'name': 'The First Affiliated Hospital of Zhejiang Chinese Medical University', 'class': 'OTHER'}, {'name': 'Eastern Hepatobiliary Surgery Hospital', 'class': 'OTHER'}, {'name': 'Qilu Hospital of Shandong University', 'class': 'OTHER'}], 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Clinical Professor, Principal Investigator', 'investigatorFullName': 'Gang Chen, MD', 'investigatorAffiliation': 'First Affiliated Hospital of Wenzhou Medical University'}}}}