Viewing Study NCT04445961


Ignite Creation Date: 2025-12-24 @ 12:51 PM
Ignite Modification Date: 2025-12-28 @ 6:18 PM
Study NCT ID: NCT04445961
Status: COMPLETED
Last Update Posted: 2020-08-27
First Post: 2020-06-22
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Respiratory Mechanics and Gas Exchange in Patients With COVID-19 and Hypoxemic Acute Respiratory Failure
Sponsor:
Organization:

Raw JSON

{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D000086382', 'term': 'COVID-19'}, {'id': 'D010349', 'term': 'Patient Compliance'}], 'ancestors': [{'id': 'D011024', 'term': 'Pneumonia, Viral'}, {'id': 'D011014', 'term': 'Pneumonia'}, {'id': 'D012141', 'term': 'Respiratory Tract Infections'}, {'id': 'D007239', 'term': 'Infections'}, {'id': 'D014777', 'term': 'Virus Diseases'}, {'id': 'D018352', 'term': 'Coronavirus Infections'}, {'id': 'D003333', 'term': 'Coronaviridae Infections'}, {'id': 'D030341', 'term': 'Nidovirales Infections'}, {'id': 'D012327', 'term': 'RNA Virus Infections'}, {'id': 'D008171', 'term': 'Lung Diseases'}, {'id': 'D012140', 'term': 'Respiratory Tract Diseases'}, {'id': 'D010342', 'term': 'Patient Acceptance of Health Care'}, {'id': 'D000074822', 'term': 'Treatment Adherence and Compliance'}, {'id': 'D015438', 'term': 'Health Behavior'}, {'id': 'D001519', 'term': 'Behavior'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'CASE_ONLY'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 117}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2020-05-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2020-06', 'completionDateStruct': {'date': '2020-08-14', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2020-08-26', 'studyFirstSubmitDate': '2020-06-22', 'studyFirstSubmitQcDate': '2020-06-23', 'lastUpdatePostDateStruct': {'date': '2020-08-27', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2020-06-24', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2020-08-14', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Optimum positive end-expiratory pressure (PEEP) level', 'timeFrame': 'On day 1 during mechanical ventilation', 'description': 'Positive end-expiratory pressure (PEEP) selection at minimum level with maximum static compliance and the highest peripheral capillary oxygen saturation over fraction of inspired oxygen (SpO2/FiO2)'}, {'measure': 'Optimum positive end-expiratory pressure (PEEP) level', 'timeFrame': 'On day 7 during mechanical ventilation', 'description': 'Positive end-expiratory pressure (PEEP) selection at minimum level with maximum static compliance and the highest peripheral capillary oxygen saturation over fraction of inspired oxygen (SpO2/FiO2)'}, {'measure': 'Number of patients with recruitable lung', 'timeFrame': 'On day 1 during mechanical ventilation', 'description': 'Peripheral capillary oxygen saturation (SpO2) change from 90% after recruitment maneuver (doubled tidal volume for 15 respiratory cycles) - if peripheral capillary oxygen saturation (SpO2) after recruitment maneuver more than 95%-recruitable'}, {'measure': 'Number of patients with recruitable lung', 'timeFrame': 'On day 7 during mechanical ventilation', 'description': 'Peripheral capillary oxygen saturation (SpO2) change from 90% after recruitment maneuver (doubled tidal volume for 15 respiratory cycles) - if peripheral capillary oxygen saturation (SpO2) after recruitment maneuver more than 95%-recruitable'}], 'secondaryOutcomes': [{'measure': 'Change in alveolar dead space', 'timeFrame': 'On day 1, 3, 5, 7, 10, 14, 21 during mechanical ventilation', 'description': 'Calculation of the alveolar dead space using end-tidal carbon dioxide measurement and arterial carbon dioxide tension measurement'}, {'measure': 'Change in plethysmogram variability during recruitment maneuver', 'timeFrame': 'On day 1, 3, 5, 7, 10, 14, 21 during mechanical ventilation', 'description': 'Measurement of plethysmogram variability before and during recruitment maneuver'}, {'measure': 'Change in arterial partial oxygen tension to inspiratory oxygen fraction (PaO2/FiO2) ratio', 'timeFrame': 'On day 1, 3, 5, 7, 10, 14, 21 during mechanical ventilation', 'description': 'Calculation of the arterial partial oxygen tension to inspiratory oxygen fraction (PaO2/FiO2) ratio using arterial oxygen tension measurement'}, {'measure': 'Optimum positive end-expiratory pressure (PEEP) level', 'timeFrame': 'On day 3, 5, 10, 14, 21 during mechanical ventilation', 'description': 'Positive end-expiratory pressure (PEEP) selection at minimum level with maximum static compliance and the highest peripheral capillary oxygen saturation over fraction of inspired oxygen (SpO2/FiO2)'}, {'measure': 'Change in driving pressure with different positive end-expiratory pressure (PEEP) levels', 'timeFrame': 'On day 1, 3, 5, 7, 10, 14, 21 during mechanical ventilation', 'description': 'Driving pressure calculation at different positive end-expiratory pressure (PEEP) levels (8, 10, 12, 14)'}]}, 'oversightModule': {'oversightHasDmc': True, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['SARS Pneumonia', 'ARDS', 'COVID-19', 'compliance', 'recruitability'], 'conditions': ['SARS Pneumonia']}, 'referencesModule': {'references': [{'pmid': '25693014', 'type': 'BACKGROUND', 'citation': 'Amato MB, Meade MO, Slutsky AS, Brochard L, Costa EL, Schoenfeld DA, Stewart TE, Briel M, Talmor D, Mercat A, Richard JC, Carvalho CR, Brower RG. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015 Feb 19;372(8):747-55. doi: 10.1056/NEJMsa1410639.'}, {'pmid': '32291463', 'type': 'RESULT', 'citation': 'Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. 2020 Jun;46(6):1099-1102. doi: 10.1007/s00134-020-06033-2. Epub 2020 Apr 14. No abstract available.'}, {'pmid': '32031570', 'type': 'RESULT', 'citation': 'Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020 Mar 17;323(11):1061-1069. doi: 10.1001/jama.2020.1585.'}, {'pmid': '30535520', 'type': 'RESULT', 'citation': 'Toufen Junior C, De Santis Santiago RR, Hirota AS, Carvalho ARS, Gomes S, Amato MBP, Carvalho CRR. Driving pressure and long-term outcomes in moderate/severe acute respiratory distress syndrome. Ann Intensive Care. 2018 Dec 7;8(1):119. doi: 10.1186/s13613-018-0469-4.'}, {'pmid': '35246024', 'type': 'DERIVED', 'citation': 'Yaroshetskiy AI, Avdeev SN, Politov ME, Nogtev PV, Beresneva VG, Sorokin YD, Konanykhin VD, Krasnoshchekova AP, Merzhoeva ZM, Tsareva NA, Trushenko NV, Mandel IA, Yavorovskiy AG. Potential for the lung recruitment and the risk of lung overdistension during 21 days of mechanical ventilation in patients with COVID-19 after noninvasive ventilation failure: the COVID-VENT observational trial. BMC Anesthesiol. 2022 Mar 4;22(1):59. doi: 10.1186/s12871-022-01600-0.'}]}, 'descriptionModule': {'briefSummary': 'Data on respiratory mechanics and gas exchange in acute respiratory failure in COVID-19 patients is limited. Knowledge of respiratory mechanics and gas exchange in COVID-19 can lead to different selection of mechanical ventilation strategy, reduce ventilator-associated lung injury and improve outcomes. The objective of the study is to evaluate the respiratory mechanics, lung recruitability and gas exchange in COVID-19 -associated acute respiratory failure during the whole course of mechanical ventilation - invasive or non-invasive.', 'detailedDescription': 'In December 2019, an outbreak of a novel coronavirus (SARS-CoV-2) emerged in Wuhan, China and rapidly spread worldwide. The World Health Organization (WHO) declared the outbreak a pandemic on March 11th, 2020. The clinical disease (COVID-19) results in critical illness in about 5% of patients with predominant acute respiratory failure.\n\nThe goal of the study is the evaluation of the respiratory mechanics (peak inspiratory pressure (PIP), plateau pressure (Pplat), static compliance (Cstat), driving pressure (DP) at different positive end-expiratory pressure (PEEP) levels and different tidal volumes (Vt) (6-8 ml/kg ideal body weight), lung recruitability (by change of DP and oxygenation) and gas exchange (PaO2/FiO2 ratio and alveolar dead space) in COVID-19 -associated acute respiratory failure during the whole course of mechanical ventilation - invasive or non-invasive for selection of safe and effective PEEP level, Vt, respiratory rate (RR) and inspiratory oxygen fraction (FiO2) during the whole course of mechanical ventilation - invasive or non-invasive.\n\nThis study is multicentral observational trial in 3 University clinics.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'maximumAge': '90 Years', 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'All patients with COVID-19 requiring respiratory support', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* all patients with COVID-19 and acute respiratory failure on invasive and noninvasive ventilation\n\nExclusion Criteria:\n\n* Patients who reached the following goals at conventional oxygen therapy (oxygen flow \\< 15 l/min): peripheral capillary oxygen saturation(SpO2) \\> 93%, no visible work of auxiliary respiratory muscles, no fatigue, stable hemodynamics (no need in any catecholamines and/or life-threatening heart rhythm abnormalities),\n* less than 24 ours in intensive care unit (ICU) by any reason,\n* lung emphysema,\n* primary lung diseases (chronic obstructive lung disease-COPD, interstitial lung diseases, etc) or tumour metastases in lungs,\n* chronic decompensated diseases with extrapulmonary organ dysfunction (tumour progression, liver cirrhosis, congestive heart failure),\n* atonic coma.'}, 'identificationModule': {'nctId': 'NCT04445961', 'acronym': 'COVID-VENT', 'briefTitle': 'Respiratory Mechanics and Gas Exchange in Patients With COVID-19 and Hypoxemic Acute Respiratory Failure', 'organization': {'class': 'OTHER', 'fullName': 'I.M. Sechenov First Moscow State Medical University'}, 'officialTitle': 'Respiratory Mechanics and Gas Exchange in Patients With COVID-19 and Hypoxemic Acute Respiratory Failure: Multicentral Observational Study', 'orgStudyIdInfo': {'id': 'COVID-VENT'}}, 'armsInterventionsModule': {'interventions': [{'name': 'Respiratory mechanics measurement', 'type': 'DIAGNOSTIC_TEST', 'description': 'Measurement of peak inspiratory pressure, plateau pressure, calculation of static compliance and driving pressure'}, {'name': 'Gas exchange measurement', 'type': 'DIAGNOSTIC_TEST', 'description': 'Measurement of arterial oxygen and tension and arterial dioxide tension, calculation of arterial partial oxygen tension to inspiratory oxygen fraction (PaO2/FiO2) ratio and alveolar dead space'}]}, 'contactsLocationsModule': {'locations': [{'city': 'Moscow', 'country': 'Russia', 'facility': 'Sechenov University Clinic #1', 'geoPoint': {'lat': 55.75204, 'lon': 37.61781}}, {'city': 'Moscow', 'country': 'Russia', 'facility': 'Sechenov University Clinic #3', 'geoPoint': {'lat': 55.75204, 'lon': 37.61781}}, {'city': 'Moscow', 'country': 'Russia', 'facility': 'Sechenov University Clinic #4', 'geoPoint': {'lat': 55.75204, 'lon': 37.61781}}], 'overallOfficials': [{'name': 'Andrey I Yaroshetskiy, Dr.Med.Sc.', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Sechenov University'}]}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'I.M. Sechenov First Moscow State Medical University', 'class': 'OTHER'}, 'responsibleParty': {'type': 'SPONSOR'}}}}