Viewing Study NCT05985057


Ignite Creation Date: 2025-12-24 @ 7:02 PM
Ignite Modification Date: 2025-12-27 @ 7:01 PM
Study NCT ID: NCT05985057
Status: COMPLETED
Last Update Posted: 2025-04-09
First Post: 2023-08-02
Is Gene Therapy: True
Has Adverse Events: False

Brief Title: A Novel Approach to Antimicrobial Resistance: Machine Learning Predictions for Carbapenem-Resistant Klebsiella in ICUs
Sponsor:
Organization:

Raw JSON

{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'interventionBrowseModule': {'meshes': [{'id': 'D001185', 'term': 'Artificial Intelligence'}], 'ancestors': [{'id': 'D000465', 'term': 'Algorithms'}, {'id': 'D055641', 'term': 'Mathematical Concepts'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 289}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2023-12-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2025-04', 'completionDateStruct': {'date': '2024-06-30', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2025-04-07', 'studyFirstSubmitDate': '2023-08-02', 'studyFirstSubmitQcDate': '2023-08-02', 'lastUpdatePostDateStruct': {'date': '2025-04-09', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2023-08-14', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2024-06-22', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Risk of Carbapenem Resistant Klebsiella Infection', 'timeFrame': '3 months', 'description': 'The sensitivity and specificity of a diagnostic method based on machine learning will be measured with the AUC-ROC curve (Area Under the Receiver Operating Characteristic curve)'}]}, 'oversightModule': {'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['Carbapenem Resistant Enterobacteriaceae Infection', 'Artificial Intelligence', 'Intensive Care Unit']}, 'referencesModule': {'references': [{'pmid': '39674007', 'type': 'DERIVED', 'citation': 'Alparslan V, Guler O, Inner B, Duzgun A, Baykara N, Kus A. A novel approach to antimicrobial resistance: Machine learning predictions for carbapenem-resistant Klebsiella in intensive care units. Int J Med Inform. 2025 Mar;195:105751. doi: 10.1016/j.ijmedinf.2024.105751. Epub 2024 Dec 7.'}], 'seeAlsoLinks': [{'url': 'https://pubmed.ncbi.nlm.nih.gov/34042702/', 'label': 'Using Machine Learning to Predict Antimicrobial Resistance of Acinetobacter Baumannii, Klebsiella Pneumoniae and Pseudomonas Aeruginosa Strains'}]}, 'descriptionModule': {'briefSummary': 'The aim of this study to predict carbapenem resistant Klebsiella spp. earlier in our patients monitored in our Intensive Care Unit in the future, using artificial intelligence.\n\nPatients with bloodstream infection and pneumonia caused by Klebsiella spp. will be comparatively examined in two groups, as sensitive and resistant. Resistance will be attempted to be predicted with deep machine learning.', 'detailedDescription': "Antimicrobial resistance is a globally increasing threat and has serious consequences on both public health and the economy. In an infection that may develop with a resistant microorganism, therapeutic options are limited, hence early and effective treatment that can be initiated by predicting resistance will make a difference in patient prognosis.\n\nToday, artificial intelligence and machine learning are changing our medical practice. When the literature is reviewed, there are studies suggesting that machine learning can predict antimicrobial resistance.Risk factors for carbapenem-resistant Klebsiella spp. have been previously identified. These previously identified risk factors will be evaluated retrospectively in our own patients and an algorithm related to the prediction of resistance will be developed with the help of machine learning.\n\nOur goal is to predict bacterial resistance earlier in our patients monitored in our Intensive Care Unit in the future, using artificial intelligence, and to facilitate our patients' access to early and effective treatment options.\n\nSecondarily, it is also aimed to provide economic benefits by preventing unnecessary antibiotic use.\n\nAccess to patients' data will be obtained retrospectively through the hospital automation system.\n\nPublications in the literature will be examined, and the risk factors causing the development of infection with carbapenem-resistant Klebsiella spp. will be evaluated.\n\nPatients with carbapenem resistance and sensitivity will be compared in two separate subgroups.\n\nThe obtained features will be classified using various decision trees and neural algorithms separately. The data obtained will be statistically compared in the distinction of resistance and sensitivity. Statistical evaluation was done with IBM SPSS 29.0 (IBM Corp., Armonk, NY, USA). Demographic data, descriptive statistics, Categorical variables will be expressed in terms of frequency (percentage).\n\nCategorical variables will be expressed with the chi-square test. The performance of Machine Learning algorithms will be evaluated by ROC analysis, AUC, classification accuracy, sensitivity, and specificity values will be calculated."}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Patients monitored in our third-level intensive care unit between June 2017 and June 2023 will be evaluated retrospectively. Patients with pneumonia and bloodstream infection developed with Klebsiella spp. will be included in the study.', 'eligibilityCriteria': 'Inclusion Criteria:\n\nPatients monitored in our third-level intensive care unit between June 2017 and June 2023 will be evaluated retrospectively. Patients with pneumonia and bloodstream infection developed with Klebsiella spp. will be included in the study.\n\nExclusion Criteria:\n\n* Patients under the age of 18 have not been included in the study.\n* Infections outside of the respiratory tract and bloodstream have not been included in the study.\n* Patients with respiratory tract colonization and without active inflammation have also not been included.'}, 'identificationModule': {'nctId': 'NCT05985057', 'acronym': 'ICU', 'briefTitle': 'A Novel Approach to Antimicrobial Resistance: Machine Learning Predictions for Carbapenem-Resistant Klebsiella in ICUs', 'organization': {'class': 'OTHER', 'fullName': 'Kocaeli University'}, 'officialTitle': 'A Novel Approach to Antimicrobial Resistance: Machine Learning Predictions for Carbapenem-Resistant Klebsiella in ICUs', 'orgStudyIdInfo': {'id': 'GOKAEK-2023/12.32'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Patients with carbapenem resistant Klebsiella spp. infection', 'interventionNames': ['Other: Artificial intelligence']}, {'label': 'Patients with carbapenem sensitive Klebsiella spp. infection', 'interventionNames': ['Other: Artificial intelligence']}], 'interventions': [{'name': 'Artificial intelligence', 'type': 'OTHER', 'description': 'Prediction of carbapenem resistance via deep machine learning model', 'armGroupLabels': ['Patients with carbapenem resistant Klebsiella spp. infection', 'Patients with carbapenem sensitive Klebsiella spp. infection']}]}, 'contactsLocationsModule': {'locations': [{'city': 'Kocaeli', 'country': 'Turkey (Türkiye)', 'facility': 'Kocaeli University', 'geoPoint': {'lat': 39.62497, 'lon': 27.51145}}]}, 'ipdSharingStatementModule': {'ipdSharing': 'UNDECIDED'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Kocaeli University', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Medical Doctor', 'investigatorFullName': 'Volkan Alparslan', 'investigatorAffiliation': 'Kocaeli University'}}}}