Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D009203', 'term': 'Myocardial Infarction'}, {'id': 'D054058', 'term': 'Acute Coronary Syndrome'}], 'ancestors': [{'id': 'D017202', 'term': 'Myocardial Ischemia'}, {'id': 'D006331', 'term': 'Heart Diseases'}, {'id': 'D002318', 'term': 'Cardiovascular Diseases'}, {'id': 'D014652', 'term': 'Vascular Diseases'}, {'id': 'D007238', 'term': 'Infarction'}, {'id': 'D007511', 'term': 'Ischemia'}, {'id': 'D010335', 'term': 'Pathologic Processes'}, {'id': 'D013568', 'term': 'Pathological Conditions, Signs and Symptoms'}, {'id': 'D009336', 'term': 'Necrosis'}]}}, 'protocolSection': {'designModule': {'phases': ['NA'], 'studyType': 'INTERVENTIONAL', 'designInfo': {'allocation': 'RANDOMIZED', 'maskingInfo': {'masking': 'DOUBLE', 'whoMasked': ['PARTICIPANT', 'OUTCOMES_ASSESSOR']}, 'primaryPurpose': 'DIAGNOSTIC', 'interventionModel': 'PARALLEL'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 500}}, 'statusModule': {'overallStatus': 'NOT_YET_RECRUITING', 'startDateStruct': {'date': '2025-08', 'type': 'ESTIMATED'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2025-07', 'completionDateStruct': {'date': '2027-09', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2025-07-11', 'studyFirstSubmitDate': '2025-07-01', 'studyFirstSubmitQcDate': '2025-07-11', 'lastUpdatePostDateStruct': {'date': '2025-07-22', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2025-07-22', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2027-08', 'type': 'ESTIMATED'}}, 'outcomesModule': {'otherOutcomes': [{'measure': 'Pre-procedural ECG analysis', 'timeFrame': 'periprocedural', 'description': 'Sensitivity analysis of diagnostic accuracy of the AI-algorithm based on the 12-lead ECG recorded immediately prior to the start of coronary angiography, instead of the ECG at presentation.'}, {'measure': 'Alternative OMI definitions', 'timeFrame': '30 days', 'description': 'Sensitivity analysis of the primary outcome using an alternative definition of OMI: TIMI flow 0-1, or TIMI flow 2-3 in the presence of large thrombus burden (TIMI thrombus grade ≥3).'}], 'primaryOutcomes': [{'measure': 'Hierarchical primary endpoint', 'timeFrame': '30 days', 'description': 'The primary endpoint of the prospective phase, analysed hierarchically using the unmatched, unstratified win ratio, will be a composite of:\n\n* Cardiovascular mortality at 30 days.\n* Timely treatment of angiographically confirmed TIMI 0-1 occlusions, defined as insertion of the arterial sheath within 120 minutes from randomization.\n* Time-to-treatment of angiographically confirmed TIMI 0-1 occlusions.\n* Peak high- hsTnT levels in ng/mL as a surrogate measure of infarct size. Time of coronary intervention will be defined as time from randomisation to insertion of the arterial sheath. Peak hsTnT is defined as the maximum level of hsTnT within 48h from randomization or within 48 hours from intervention if percutaneous coronary intervention took place later than 24 hours from randomization.'}], 'secondaryOutcomes': [{'measure': 'Cardiovascular mortality at 30 days', 'timeFrame': '30 days', 'description': 'Cardiovascular mortality at 30 days'}, {'measure': 'Timely treatment of TIMI 0-1 occlusions', 'timeFrame': 'Periprocedural', 'description': 'Timely treatment is defined as arterial sheath insertion within 120 minutes of randomization'}, {'measure': 'Time-to-treatment of TIMI 0-1 occlusions', 'timeFrame': 'Periprocedural', 'description': 'Expressed in minutes from time of randomization'}, {'measure': 'Peak hsTnT levels', 'timeFrame': '48 hours from randomization or intervention', 'description': 'Peak hsTnT is defined as the maximum level of hsTnT within 48h from randomization or within 48 hours from intervention if percutaneous coronary intervention took place later than 24 hours from randomization.'}, {'measure': 'Major adverse cardiovascular events (MACE) at follow-up', 'timeFrame': 'up to 10 years', 'description': 'Major adverse cardiovascular events (MACE), defined as a composite of cardiovascular death, myocardial infarction, or stroke at follow up (30-days, 1 year, 3/5/10 years)'}, {'measure': 'Cardiovascular death at follow-up', 'timeFrame': 'up to 10 years', 'description': 'Cardiovascular death at follow up (30-days, 1 year, 3/5/10 years)'}, {'measure': 'Myocardial infarction at follow-up', 'timeFrame': 'up to 10 years', 'description': 'Myocardial infarction at follow up (30-days, 1 year, 3/5/10 years)'}, {'measure': 'Stroke at follow-up', 'timeFrame': 'up to 10 years', 'description': 'Stroke at follow up (30-days, 1 year, 3/5/10 years)'}, {'measure': 'Infarct Size', 'timeFrame': '48 hours from randomization or intervention', 'description': '• hsTnT area under the curve'}, {'measure': 'Infarct Size', 'timeFrame': '48 hours from randomization or intervention', 'description': '• Creatine kinase-MB (CK-MB) peak concentration'}, {'measure': 'Infarct Size', 'timeFrame': '48 hours from randomization or intervention', 'description': '• CK-MB area under the curve'}, {'measure': 'Time from randomization to antithrombotic therapy', 'timeFrame': 'periprocedural', 'description': 'Time from randomization to antithrombotic therapy (expressed in minutes)'}, {'measure': 'Time from randomization to coronary angiography', 'timeFrame': 'periprocedural', 'description': 'Time from randomization to coronary angiography (expressed in minutes) This outcome will be assessed both in all patients and in patients with OMI according to the different definitions.'}, {'measure': 'Angiographic outcomes (restricted to patients undergoing PCI)', 'timeFrame': 'Periprocedural', 'description': '* Worst TIMI flow grade post-PCI (0-3)\n* Worst TIMI thrombus grade post-PCI (0-5)'}, {'measure': 'Total time spent in the emergency department post-randomization', 'timeFrame': 'periprocedural', 'description': 'Total time spent in the emergency department post-randomization'}, {'measure': 'Length of hospital stay post-randomization', 'timeFrame': 'up to 30 days', 'description': 'Length of hospital stay post-randomization (days)'}, {'measure': 'Resource utilization', 'timeFrame': 'periprocedural', 'description': 'Number of diagnostic tests and procedures performed post-randomization before coronary angiography, including troponin measurements, transthoracic echocardiography and stress testing'}, {'measure': 'Health economic outcomes', 'timeFrame': '30 days', 'description': 'These include both direct and indirect costs.\n\nDirect costs are defined as medical costs incurred post-randomization during the index hospitalization or emergency department visit, including diagnostics and procedures (e.g., ECG, troponin testing, coronary angiography, PCI), medications and consumables, staff time, and length of stay.\n\nIndirect costs, defined as non-medical or societal costs up to 30 days post-randomization, including lost productivity (e.g., time off work for patients or caregivers), transportation to follow-up visits, informal caregiving support, and early rehabilitation services'}, {'measure': 'Safety (Serious adverse events)', 'timeFrame': 'up to 10 years'}, {'measure': 'Diagnostic accuracy of AI algorithm', 'timeFrame': 'periprocedural', 'description': 'Restricted to patients in the control group:\n\n* Sensitivity\n* Specificity\n* Positive predictive value (PPV)\n* Negative predictive value (NPV)'}, {'measure': 'Quality of life (EQ-5D-5L)', 'timeFrame': 'up to 30 days', 'description': 'Health-related quality of life, assessed using the EQ-5D-5L instrument at discharge and 30 days post-randomization'}]}, 'oversightModule': {'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['Occlusion Myocardial Infarction', 'Electrocardiogram', 'Artificial Intelligence'], 'conditions': ['Myocardial Infarction (MI)', 'Acute Coronary Syndrome (ACS)']}, 'descriptionModule': {'briefSummary': 'The goal of this clinical trial is to evaluate whether an artificial intelligence (AI)-based ECG interpretation tool improves the early diagnosis and treatment of occlusion myocardial infarction (OMI) in adults presenting with suspected acute coronary syndrome (ACS) who do not meet traditional ST-elevation myocardial infarction (STEMI) criteria.\n\nThe main questions it aims to answer are:\n\n1. Does AI-assisted ECG interpretation enable more timely identification and treatment of OMI, as defined by earlier initiation of coronary intervention?\n2. Does AI-assisted diagnosis reduce infarct size, measured by peak high-sensitivity troponin T (hsTnT) levels?\n\nResearchers will compare AI-assisted ECG interpretation to standard care to determine if the AI tool improves clinical outcomes and care timelines.\n\nParticipants will:\n\n1. Present with symptoms suggestive of ACS but without clear STEMI criteria\n2. Be randomized 1:1 to either AI-assisted or standard ECG interpretation\n3. Undergo follow-up assessments for cardiovascular outcomes, including 30-day death, time to treatment of total coronary occlusion, and peak hsTnT levels'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n1. Symptoms suspected of ongoing acute myocardial ischemia: Patients presenting with symptoms such as chest pain, dyspnoea, sweating, nausea or vomiting, pain radiating to the shoulder/arm/jaw/back, fatigue, or light-headedness\n2. Age: Patients aged 18 years or older.\n3. Informed Consent: Patients able to provide informed consent\n\nExclusion Criteria:\n\n1. Clear diagnosis of ST-segment elevation MI (STEMI) according to managing physicians.\n2. Pregnancy or Lactation.\n3. Legally incompetent to provide informed consent.\n4. Symptoms onset\\>24 hrs prior to clinical presentation.'}, 'identificationModule': {'nctId': 'NCT07077057', 'acronym': 'TITAN-OMI', 'briefTitle': 'Ticino Artificial InTelligence integrAtioN for Occlusion Myocardial Infarction', 'organization': {'class': 'OTHER', 'fullName': 'Cardiocentro Ticino'}, 'officialTitle': 'Ticino Artificial InTelligence integrAtioN for Occlusion Myocardial Infarction', 'orgStudyIdInfo': {'id': '2024-01655'}}, 'armsInterventionsModule': {'armGroups': [{'type': 'EXPERIMENTAL', 'label': 'AI-assisted ECG interpretation', 'description': 'Participants will receive ECG interpretation supported by a CE-marked artificial intelligence (AI) tool (PMcardio, Powerful Medical). The AI output is made available to clinicians in real time, prior to diagnostic or therapeutic decisions, to facilitate earlier identification of occlusion myocardial infarction (OMI) and potentially expedite intervention.', 'interventionNames': ['Diagnostic Test: AI-assisted ECG interpretation (PMcardio)']}, {'type': 'NO_INTERVENTION', 'label': 'Standard of Care', 'description': 'Participants will receive standard ECG interpretation without AI support. Clinical decisions regarding diagnosis and treatment will follow usual care pathways, without influence from the AI tool. This arm serves as the comparator to evaluate the added value of AI integration.'}], 'interventions': [{'name': 'AI-assisted ECG interpretation (PMcardio)', 'type': 'DIAGNOSTIC_TEST', 'description': 'Participants in the experimental arm will undergo 12-lead ECG interpretation supported by a CE-marked artificial intelligence (AI) tool (PMcardio, Powerful Medical, Slovakia). The AI algorithm analyzes ECG data in real time to detect patterns suggestive of occlusion myocardial infarction (OMI), including cases not meeting traditional ST-elevation myocardial infarction (STEMI) criteria. In the experimental arm, the AI output is provided immediately to the treating clinician and used as an adjunct to standard ECG interpretation to support timely diagnosis and management decisions.', 'armGroupLabels': ['AI-assisted ECG interpretation']}]}, 'contactsLocationsModule': {'locations': [{'zip': '6900', 'city': 'Lugano', 'state': 'Canton Ticino', 'country': 'Switzerland', 'contacts': [{'name': 'Marco Valgimigli, MD, PhD', 'role': 'CONTACT', 'email': 'marco.valgimigli@eoc.ch', 'phone': '+41 91 8115363'}, {'name': 'Andrea Milzi, MD', 'role': 'CONTACT', 'email': 'andrea.milzi@eoc.ch', 'phone': '+41 91 8115385'}, {'name': 'Marco Valgimigli, MD PhD', 'role': 'PRINCIPAL_INVESTIGATOR'}, {'name': 'Andrea Milzi, MD', 'role': 'SUB_INVESTIGATOR'}], 'facility': 'Cardiocentro Ticino Institute', 'geoPoint': {'lat': 46.01008, 'lon': 8.96004}}]}, 'ipdSharingStatementModule': {'infoTypes': ['STUDY_PROTOCOL', 'SAP'], 'ipdSharing': 'YES', 'accessCriteria': 'Reasonable request'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Cardiocentro Ticino', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Deputy Chief of Cardiology', 'investigatorFullName': 'Marco Valgimigli', 'investigatorAffiliation': 'Cardiocentro Ticino'}}}}