Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D012164', 'term': 'Retinal Diseases'}], 'ancestors': [{'id': 'D005128', 'term': 'Eye Diseases'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 10000}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'UNKNOWN', 'lastKnownStatus': 'RECRUITING', 'startDateStruct': {'date': '2020-11-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2020-10', 'completionDateStruct': {'date': '2021-12-01', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2020-12-09', 'studyFirstSubmitDate': '2020-10-13', 'studyFirstSubmitQcDate': '2020-10-15', 'lastUpdatePostDateStruct': {'date': '2020-12-11', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2020-10-19', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2021-11-01', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Area under curve', 'timeFrame': '1 week', 'description': 'We will use the receiver operating characteristic (ROC) curve to examine the ability of recognition and classification of diseases. Taken the results of the expert panel as the gold standard, we will use the area under curve to compare the diagnostic capacity between the AI recognition system and human ophthalmologist.'}, {'measure': 'Sensitivity and specificity', 'timeFrame': '1 week', 'description': 'Taken the results of the expert panel as the gold standard, we will use sensitivity and specificity to compare the diagnostic capacity between the AI recognition system and human ophthalmologist.'}, {'measure': 'Positive and negative predictive value', 'timeFrame': '1 week', 'description': 'Taken the results of the expert panel as the gold standard, we will use positive and negative predictive value to compare the diagnostic capacity between the AI recognition system and human ophthalmologist.'}, {'measure': 'Accuracy', 'timeFrame': '1 week', 'description': 'Taken the results of the expert panel as the gold standard, we will use accuracy to compare the diagnostic capacity between the AI recognition system and human ophthalmologist.'}]}, 'oversightModule': {'isUsExport': False, 'isFdaRegulatedDrug': True, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['Deep Learning', 'Retinal Diseases']}, 'referencesModule': {'references': [{'pmid': '36878715', 'type': 'DERIVED', 'citation': 'Gu C, Wang Y, Jiang Y, Xu F, Wang S, Liu R, Yuan W, Abudureyimu N, Wang Y, Lu Y, Li X, Wu T, Dong L, Chen Y, Wang B, Zhang Y, Wei WB, Qiu Q, Zheng Z, Liu D, Chen J. Application of artificial intelligence system for screening multiple fundus diseases in Chinese primary healthcare settings: a real-world, multicentre and cross-sectional study of 4795 cases. Br J Ophthalmol. 2024 Feb 21;108(3):424-431. doi: 10.1136/bjo-2022-322940.'}]}, 'descriptionModule': {'briefSummary': 'The objective of this study is to establish deep learning (DL) algorithm to automatically classify multi-diseases from fundus photography and differentiate major vision-threatening conditions and other retinal abnormalities. The effectiveness and accuracy of the established algorithm will be evaluated in community derived dataset.', 'detailedDescription': 'Retinal diseases seriously threaten vision and quality of life, but they often develop insidiously. To date, deep learning (DL) algorithms have shown high prospects in biomedical science, particularly in the diagnosis of ocular diseases, such as diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity, glaucoma, and papilledema. However, there is still a lack of a single algorithm that can classify multi-diseases from fundus photography.\n\nThis cross-sectional study will establish a DL algorithm to automatically classify multi-diseases from fundus photography and differentiate major vision-threatening conditions and other retinal abnormalities. We will use the receiver operating characteristic (ROC) curve to examine the ability of recognition and classification of diseases. Taken the results of the expert panel as the gold standard, we will use the evaluation indexes, such as sensitivity, specificity, accuracy, positive predictive value, negative predictive value, etc, to compare the diagnostic capacity between the AI recognition system and human ophthalmologist.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['CHILD', 'ADULT', 'OLDER_ADULT'], 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'community derived dataset', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* fundus photography around 45° field which covers optic disc and macula\n* complete patient identification information;\n\nExclusion Criteria:\n\n* incomplete patient identification information'}, 'identificationModule': {'nctId': 'NCT04592068', 'briefTitle': 'AI Classifies Multi-Retinal Diseases', 'organization': {'class': 'OTHER', 'fullName': 'Beijing Tongren Hospital'}, 'officialTitle': 'Deep Learning-Based Automated Classification of Multi-Retinal Disease From Fundus Photography', 'orgStudyIdInfo': {'id': 'Retinal multi diseases'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Retinal multi-diseases diagnosed by DL algorithm', 'interventionNames': ['Device: Retinal multi-diseases diagnosed by DL algorithm']}, {'label': 'Retinal multi-diseases diagnosed by expert panel', 'interventionNames': ['Other: Retinal multi-diseases diagnosed by expert panel']}], 'interventions': [{'name': 'Retinal multi-diseases diagnosed by DL algorithm', 'type': 'DEVICE', 'description': 'DL algorithm automatically classify multi-diseases from fundus photography and differentiate major vision-threatening conditions and other retinal abnormalities.', 'armGroupLabels': ['Retinal multi-diseases diagnosed by DL algorithm']}, {'name': 'Retinal multi-diseases diagnosed by expert panel', 'type': 'OTHER', 'description': 'Expert panel classifies multi-diseases from fundus photography and differentiate major vision-threatening conditions and other retinal abnormalities.', 'armGroupLabels': ['Retinal multi-diseases diagnosed by expert panel']}]}, 'contactsLocationsModule': {'locations': [{'zip': '100730', 'city': 'Beijing', 'state': 'Beijing Municipality', 'status': 'RECRUITING', 'country': 'China', 'contacts': [{'name': 'Wen-Bin Wei, MD', 'role': 'CONTACT', 'email': 'weiwenbintr@163.com'}, {'name': 'Wen-Bin Wei, MD', 'role': 'PRINCIPAL_INVESTIGATOR'}], 'facility': 'Wen-Bin Wei', 'geoPoint': {'lat': 39.9075, 'lon': 116.39723}}]}, 'ipdSharingStatementModule': {'ipdSharing': 'UNDECIDED'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Beijing Tongren Hospital', 'class': 'OTHER'}, 'collaborators': [{'name': 'Beijing Tulip Partner Technology Co., Ltd, China', 'class': 'UNKNOWN'}], 'responsibleParty': {'type': 'SPONSOR'}}}}