Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D028361', 'term': 'Mitochondrial Diseases'}, {'id': 'D017240', 'term': 'Mitochondrial Myopathies'}], 'ancestors': [{'id': 'D008659', 'term': 'Metabolic Diseases'}, {'id': 'D009750', 'term': 'Nutritional and Metabolic Diseases'}, {'id': 'D009135', 'term': 'Muscular Diseases'}, {'id': 'D009140', 'term': 'Musculoskeletal Diseases'}, {'id': 'D009468', 'term': 'Neuromuscular Diseases'}, {'id': 'D009422', 'term': 'Nervous System Diseases'}]}}, 'protocolSection': {'designModule': {'bioSpec': {'retention': 'SAMPLES_WITH_DNA', 'description': 'Blood, muscle tissue, subcutaneous adipose tissue'}, 'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'CROSS_SECTIONAL', 'observationalModel': 'CASE_CONTROL'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 30}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2023-10-20', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2025-06', 'completionDateStruct': {'date': '2024-12-20', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2025-06-17', 'studyFirstSubmitDate': '2023-09-29', 'studyFirstSubmitQcDate': '2023-10-06', 'lastUpdatePostDateStruct': {'date': '2025-06-22', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2023-10-12', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2024-12-20', 'type': 'ACTUAL'}}, 'outcomesModule': {'otherOutcomes': [{'measure': 'Body composition', 'timeFrame': 'Baseline', 'description': 'Fat free mass and fat mass are determined by dual-energy X-ray absorptiometry'}, {'measure': 'Physical activity level', 'timeFrame': 'Baseline', 'description': 'Physical activity level is measured by wrist-worn accelerometers'}, {'measure': 'Self-reported physical activity', 'timeFrame': 'Baseline', 'description': 'Self-reported physical activity is measured by the International Physical Activity Questionnaire - Short Form (IPAQ-SF)'}, {'measure': 'Cardiorespiratory fitness', 'timeFrame': 'Baseline', 'description': 'Pulmonary maximal oxygen uptake (VO2max) is determined during an incremental exercise test to exhaustion'}], 'primaryOutcomes': [{'measure': 'Resting energy expenditure', 'timeFrame': 'Before (baseline) and 60-180 minutes after ingestion of a glucose solution', 'description': 'Resting energy expenditure is measured in the fasting and fed state by indirect calorimetry'}, {'measure': 'Appetite', 'timeFrame': 'Before (baseline) and 60-180 minutes after ingestion of a glucose solution as well as immediately after an ad libitum meal test', 'description': 'Subjective appetite sensations are measured in the fasting and fed state by visual analogue scale (VAS) ratings'}, {'measure': 'Energy intake', 'timeFrame': '180 minutes after ingestion of a glucose solution', 'description': 'Energy intake is measured by quantifying the amount of food ingested during an ad libitum meal test'}], 'secondaryOutcomes': [{'measure': 'Plasma hormones and cytokines modulating appetite and energy expenditure', 'timeFrame': 'Before (baseline) and 0-180 minutes after ingestion of a glucose solution', 'description': 'Plasma levels of FGF21, GDF15, GLP-1, PYY, ghrelin, glucagon, and GIP are measured in the fasting and fed state'}, {'measure': 'Plasma adipokines modulating appetite and energy expenditure', 'timeFrame': 'Baseline', 'description': 'Plasma levels of leptin and adiponectin are measured in the fasting state'}, {'measure': 'Muscle mitochondrial leak respiration', 'timeFrame': 'Baseline', 'description': 'Mitochondrial O2 flux is measured by high-resolution respirometry in permeabilized muscle fibers'}, {'measure': 'Muscle mitochondrial efficiency', 'timeFrame': 'Baseline', 'description': 'Mitochondrial P/O ratio is measured by high-resolution respirometry in isolated mitochondria'}, {'measure': 'Muscle mitochondrial membrane potential', 'timeFrame': 'Baseline', 'description': 'Mitochondrial membrane potential is measured by high-resolution fluorometry in isolated mitochondria'}]}, 'oversightModule': {'isUsExport': False, 'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['Energy balance', 'Energy expenditure', 'Appetite', 'Energy intake', 'Mitochondrial dysfunction'], 'conditions': ['Mitochondrial Diseases', 'Mitochondrial Myopathies', 'Mitochondrial Disorder']}, 'referencesModule': {'references': [{'pmid': '35895846', 'type': 'BACKGROUND', 'citation': 'Guo Q, Xu Z, Zhou D, Fu T, Wang W, Sun W, Xiao L, Liu L, Ding C, Yin Y, Zhou Z, Sun Z, Zhu Y, Zhou W, Jia Y, Xue J, Chen Y, Chen XW, Piao HL, Lu B, Gan Z. Mitochondrial proteostasis stress in muscle drives a long-range protective response to alleviate dietary obesity independently of ATF4. Sci Adv. 2022 Jul 29;8(30):eabo0340. doi: 10.1126/sciadv.abo0340. Epub 2022 Jul 27.'}, {'pmid': '34899594', 'type': 'BACKGROUND', 'citation': 'Yang M, Xu L, Xu C, Cui Y, Jiang S, Dong J, Liao L. The Mutations and Clinical Variability in Maternally Inherited Diabetes and Deafness: An Analysis of 161 Patients. Front Endocrinol (Lausanne). 2021 Nov 25;12:728043. doi: 10.3389/fendo.2021.728043. eCollection 2021.'}, {'pmid': '36635485', 'type': 'BACKGROUND', 'citation': 'Sturm G, Karan KR, Monzel AS, Santhanam B, Taivassalo T, Bris C, Ware SA, Cross M, Towheed A, Higgins-Chen A, McManus MJ, Cardenas A, Lin J, Epel ES, Rahman S, Vissing J, Grassi B, Levine M, Horvath S, Haller RG, Lenaers G, Wallace DC, St-Onge MP, Tavazoie S, Procaccio V, Kaufman BA, Seifert EL, Hirano M, Picard M. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun Biol. 2023 Jan 12;6(1):22. doi: 10.1038/s42003-022-04303-x.'}, {'pmid': '33355307', 'type': 'BACKGROUND', 'citation': 'O\'Rahilly S. "Treasure Your Exceptions"-Studying Human Extreme Phenotypes to Illuminate Metabolic Health and Disease: The 2019 Banting Medal for Scientific Achievement Lecture. Diabetes. 2021 Jan;70(1):29-38. doi: 10.2337/dbi19-0037.'}, {'pmid': '28406212', 'type': 'BACKGROUND', 'citation': "Saleheen D, Natarajan P, Armean IM, Zhao W, Rasheed A, Khetarpal SA, Won HH, Karczewski KJ, O'Donnell-Luria AH, Samocha KE, Weisburd B, Gupta N, Zaidi M, Samuel M, Imran A, Abbas S, Majeed F, Ishaq M, Akhtar S, Trindade K, Mucksavage M, Qamar N, Zaman KS, Yaqoob Z, Saghir T, Rizvi SNH, Memon A, Hayyat Mallick N, Ishaq M, Rasheed SZ, Memon FU, Mahmood K, Ahmed N, Do R, Krauss RM, MacArthur DG, Gabriel S, Lander ES, Daly MJ, Frossard P, Danesh J, Rader DJ, Kathiresan S. Human knockouts and phenotypic analysis in a cohort with a high rate of consanguinity. Nature. 2017 Apr 12;544(7649):235-239. doi: 10.1038/nature22034."}]}, 'descriptionModule': {'briefSummary': 'The overarching aim of this observational study is to determine alterations in energy balance while exploring the underlying cellular mechanisms in human genetic models of mitochondrial stress.\n\nIn a case-control design, individuals with pathogenic mitochondrial DNA mutations will be compared to healthy controls matched for sex, age, and physical activity level. Participants will attend a screening visit and an experimental trial including assessments of energy expenditure, appetite sensation, energy intake, and muscle and subcutaneous adipose tissue biopsy samples.', 'detailedDescription': 'Background: Pre-clinical models of mitochondrial stress are resistant to diet-induced obesity. Likewise, humans with primary mitochondrial diseases present a high prevalence of underweight (42%) as compared to a very low prevalence of obesity (2%). In this direction, recent data show a lower BMI across 17 cohorts of patients with mitochondrial diseases compared to national averages, suggesting mitochondrial stress-induced increments in resting energy expenditure as the primary driver of the lean phenotype. In recent years, the study of humans with genetic mutations has shown enormous potential to establish the mechanistic link between two physiological variables; indeed, if the mutation has a functional impact on one of those variables, then the direction of causality can be readily ascribed. Taken together, studies integrating assessments of energy balance with mitochondrial phenotyping in patients with rare mitochondrial disorders hold the potential to uncover putative mechanisms conferring protection from obesity in humans.\n\nObjective: To determine alterations in energy expenditure/intake while exploring the underlying cellular mechanisms in individuals harboring mitochondrial DNA (mtDNA) mutations associated with mitochondrial stress.\n\nStudy design: Case-control study in individuals with mtDNA mutations (n=15) and healthy controls (n=15) matched for sex, age, and physical activity level.\n\nEndpoint: Differences between individuals with mtDNA mutations and controls.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Individuals with mitochondrial myopathy due to pathogenic mtDNA mutations are identified and recruited from the Copenhagen Neuromuscular Center or the Department of Clinical Genetics (Rigshospitalet).\n\nControl volunteers are recruited via recruitment announcements in Denmark.', 'healthyVolunteers': True, 'eligibilityCriteria': 'Eligibility criteria for individuals with mitochondrial DNA mutations\n\nInclusion criteria:\n\n\\- Known mtDNA point mutations\n\nExclusion criteria:\n\n* Use of antiarrhythmic medications or other medications which, in the opinion of the investigators, have the potential to affect outcome measures.\n* Diagnosed severe heart disease, dysregulated thyroid gland conditions, or other dysregulated endocrinopathies, or other conditions which, in the opinion of the investigators, have the potential to affect outcome measures.\n* Pregnancy\n\nEligibility criteria for controls\n\nExclusion criteria:\n\n* Current and regular use of antidiabetic medications or other medications which, in the opinion of the investigators, have the potential to affect outcome measures.\n* Diagnosed heart disease, symptomatic asthma, liver cirrhosis or -failure, chronic kidney disease, dysregulated thyroid gland conditions or other dysregulated endocrinopathies, or other conditions which, in the opinion of the investigators, have the potential to affect outcome measures\n* Daily use of tobacco products\n* Excessive alcohol consumption\n* Pregnancy'}, 'identificationModule': {'nctId': 'NCT06080568', 'acronym': 'MITO-OB-RES', 'briefTitle': 'Human Mitochondrial Stress-driven Obesity Resistance', 'organization': {'class': 'OTHER', 'fullName': 'Rigshospitalet, Denmark'}, 'officialTitle': 'Energy Balance and Mitochondrial Function in Human Genetic Models of Mitochondrial Stress-mediated Obesity Resistance', 'orgStudyIdInfo': {'id': 'MITO-OB-RES'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Mitochondrial myopathy', 'description': 'Individuals with pathogenic mtDNA mutations'}, {'label': 'Control', 'description': 'Individuals without mtDNA mutations'}]}, 'contactsLocationsModule': {'locations': [{'zip': '2100', 'city': 'Copenhagen', 'state': 'Denmark', 'country': 'Denmark', 'facility': 'Rigshospitalet', 'geoPoint': {'lat': 55.67594, 'lon': 12.56553}}], 'overallOfficials': [{'name': 'Matteo Fiorenza, Ph.D.', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Rigshospitalet, Denmark'}, {'name': 'John Vissing, MD', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Rigshospitalet, Denmark'}, {'name': 'Signe Torekov, Ph.D.', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'University of Copenhagen'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Rigshospitalet, Denmark', 'class': 'OTHER'}, 'collaborators': [{'name': 'University of Copenhagen', 'class': 'OTHER'}], 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Principal Investigator', 'investigatorFullName': 'Matteo Fiorenza', 'investigatorAffiliation': 'Rigshospitalet, Denmark'}}}}