Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D002318', 'term': 'Cardiovascular Diseases'}, {'id': 'D004630', 'term': 'Emergencies'}], 'ancestors': [{'id': 'D020969', 'term': 'Disease Attributes'}, {'id': 'D010335', 'term': 'Pathologic Processes'}, {'id': 'D013568', 'term': 'Pathological Conditions, Signs and Symptoms'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 65}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2018-08-07', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2022-05', 'completionDateStruct': {'date': '2022-05-31', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2022-10-30', 'studyFirstSubmitDate': '2021-06-01', 'studyFirstSubmitQcDate': '2021-06-08', 'lastUpdatePostDateStruct': {'date': '2022-11-01', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2021-06-09', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2022-05-31', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'The degree of agreement between clinical information retrieved using voice/image technology and information recorded by physicians.', 'timeFrame': 'At the time of study completion (March 2023 anticipated).', 'description': 'Clinical information include chief complaint, type and onset of symptoms, and physical examination results.'}]}, 'oversightModule': {'oversightHasDmc': True}, 'conditionsModule': {'keywords': ['Image recognition', 'Voice recognition', 'Emergency department'], 'conditions': ['Cardiovascular Diseases']}, 'descriptionModule': {'briefSummary': 'Video and audio data of cardio-vascular patients who visit the emergency department (ED) will be collected to build a database. Clinical information retrieved from the database using voice and image technology will be compared to that retrieved by physicians. The degree of agreement will be evaluated.', 'detailedDescription': 'Study Objectives:\n\n1. To develop a platform to record video and audio data of cardio-vascular patients who visited the ED.\n2. To retrieve clinical information using voice and image technology.\n3. To develop a tool to retrieve clinical information using voice and image technology.\n4. To build a clinical database using video and audio data using voice and image technology.\n\nStudy design: Single-center observational study (tertiary hospital emergency department in Korea).\n\nA platform to record video and audio data of physicians examining patients will be developed. The camera and microphone will be installed at an optimal location to retrieve video and audio data of cardio-vascular patients.\n\nVoice and image technology will be used to retrieve clinical information including chief complaint, type and onset of symptoms, past medical history, and physical examination results to build a database. Clinical information including examination notes, diagnosis, patient vital signs, test results, and ED results will be retrieved from the hospital database.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '19 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Adults who visit the emergency department with cardio-vascular chief complaints and without one of the exclusion criteria will be enrolled in this study.', 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Age 19 years or older\n* Visited the emergency department of the study hospital\n* Chief complaint of chest pain, dyspnea, syncope, altered mentality, side weakness, dizziness, and dysarthria\n\nExclusion Criteria:\n\n* Patients who do not agree to enroll to this study\n* Pregnant patient\n* Without a family\n* Foreign patients'}, 'identificationModule': {'nctId': 'NCT04918966', 'briefTitle': 'Development of Cardio-Vascular Emergency Patients Database Using Voice and Image Technology', 'organization': {'class': 'OTHER', 'fullName': 'Seoul National University Hospital'}, 'officialTitle': 'Automatic Clinical Information Extraction Technology Development and Database Construction for Cardio-Vascular Emergency Patients Based on Voice and Image Recognition Technology', 'orgStudyIdInfo': {'id': 'SNUEMSAVCV'}}, 'contactsLocationsModule': {'locations': [{'zip': '03080', 'city': 'Seoul', 'country': 'South Korea', 'facility': 'Seoul National University Hospital', 'geoPoint': {'lat': 37.566, 'lon': 126.9784}}], 'overallOfficials': [{'name': 'Ki Jeong Hong, PhD', 'role': 'STUDY_DIRECTOR', 'affiliation': 'Seoul National University Hospital'}]}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Seoul National University Hospital', 'class': 'OTHER'}, 'collaborators': [{'name': 'National Research Foundation of Korea', 'class': 'OTHER'}], 'responsibleParty': {'type': 'SPONSOR'}}}}