Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D062788', 'term': 'Adenomyosis'}], 'ancestors': [{'id': 'D014591', 'term': 'Uterine Diseases'}, {'id': 'D005831', 'term': 'Genital Diseases, Female'}, {'id': 'D052776', 'term': 'Female Urogenital Diseases'}, {'id': 'D005261', 'term': 'Female Urogenital Diseases and Pregnancy Complications'}, {'id': 'D000091642', 'term': 'Urogenital Diseases'}, {'id': 'D000091662', 'term': 'Genital Diseases'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 500}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2020-01-02', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2023-12', 'completionDateStruct': {'date': '2022-09-01', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2023-12-23', 'studyFirstSubmitDate': '2019-10-16', 'studyFirstSubmitQcDate': '2019-10-19', 'lastUpdatePostDateStruct': {'date': '2023-12-27', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2019-10-22', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2022-06-23', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Diagnostic accuracy of the prediction model for adenomyosis', 'timeFrame': '1 year', 'description': 'Diagnostic accuracy will be described using sensitivity (in %), specificity (in %), positive predictive value (in %), negative predictive value (in %), positive likelihood ratio (calculated by sensitivity/1-specificity), negative likelihood ratio (calculated as 1-sensitivity/specificity) and the area under the receiver-operator curve (as calculated with the (0-1) of the model.'}], 'secondaryOutcomes': [{'measure': 'Intraclass correlation coefficient (ICC) between readers', 'timeFrame': '2 years', 'description': 'ICC values are categorized as follows: 0-0.20, slight agreement; 0.21-0.40, fair agreement; 0.41-0.60, moderate agreement; 0.61-0.80, substantial agreement; and 0.81-1, almost perfect agreement'}]}, 'oversightModule': {'oversightHasDmc': True, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['Adenomyosis', 'Pelvic Pain Syndrome']}, 'referencesModule': {'references': [{'pmid': '30316443', 'type': 'BACKGROUND', 'citation': 'Tellum T, Nygaard S, Skovholt EK, Qvigstad E, Lieng M. Development of a clinical prediction model for diagnosing adenomyosis. Fertil Steril. 2018 Oct;110(5):957-964.e3. doi: 10.1016/j.fertnstert.2018.06.009.'}]}, 'descriptionModule': {'briefSummary': 'Adenomyosis is a disease where ectopic endometrial glands affect the muscular wall of the uterus. Women that suffer from dysmenorrhea or infertility caused by adenomyosis need to confirm or rule out adenomyosis, and therefore tools for non-histologic confirmation of adenomyosis are indubitably required. Transvaginal ultrasound has been shown to be useful in diagnosing adenomyosis, but the interpretation of findings requires significant expertise in ultrasound and experience with diagnosing adenomyosis. This is because adenomyosis shows a very heterogeneous appearance in ultrasound. There are many different diagnostic signs that have to be considered and weighed.\n\nIn a previous study, the investigators have developed a diagnostic algorithm that helps clinicians diagnose adenomyosis with transvaginal ultrasound and a clinical examination. It showed good diagnostic accuracy and seemed to be very robust with regards to artifacts and experience of the examiner. It is now necessary to validate this prediction model in a new, prospective study so it can be used in clinical practice.'}, 'eligibilityModule': {'sex': 'FEMALE', 'stdAges': ['CHILD', 'ADULT'], 'maximumAge': '52 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'A consecutive sample of women that are scheduled for a hysterectomy at one of the study sites and fulfill eligibility criteria are invited to participate.', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Premenopausal (defined by having had menstruation the last six month)\n* If amenorrhea with levonorgestrel intrauterine device, the woman should be \\< 45 years old\n* Hysterectomy planned due to a benign condition\n* Hysterectomy does not require morcellation it is allowed to divide the uterus into 2-3 pieces, given that the orientation of the specimen is still possible for the pathologist)\n* Written consent is given\n* Can communicate in Norwegian or English at the Norwegian study sites, and Finnish, Swedish or English at the Finnish study site.\n\nExclusion Criteria:\n\n* Gynecological cancer present at the time of inclusion\n* Use of gonadotropin-releasing hormone agonist or antagonist within the last 3 months prior to the ultrasound evaluation\n* Prior endometrial ablation or resection\n* Postmenopausal status or no menstrual bleeding for the last 6 months, or amenorrhea with levonorgestrel-intrauterine device and age \\>45 years.\n* Need for morcellation of the uterus'}, 'identificationModule': {'nctId': 'NCT04135118', 'briefTitle': 'Validation of the Adenomyosis Calculator', 'organization': {'class': 'OTHER', 'fullName': 'Oslo University Hospital'}, 'officialTitle': 'Prospective Validation of a Prediction Model for Diagnosing Adenomyosis With Ultrasound.', 'orgStudyIdInfo': {'id': 'OUS P360'}}, 'contactsLocationsModule': {'locations': [{'zip': '20521', 'city': 'Turku', 'country': 'Finland', 'facility': 'Turku University Hospital', 'geoPoint': {'lat': 60.45148, 'lon': 22.26869}}, {'zip': '1478', 'city': 'Lørenskog', 'state': 'Akershus', 'country': 'Norway', 'facility': 'Akershus University Hospital, Dept. of gynecology'}, {'zip': 'NO-7006', 'city': 'Trondheim', 'state': 'Trøndelag', 'country': 'Norway', 'facility': 'St. Olavs Hospital, Dept. of Gynecology', 'geoPoint': {'lat': 63.43049, 'lon': 10.39506}}, {'zip': '3103', 'city': 'Tønsberg', 'state': 'Vestfold', 'country': 'Norway', 'facility': 'Sykehuset i Vestfold', 'geoPoint': {'lat': 59.26754, 'lon': 10.40762}}, {'zip': '0382', 'city': 'Oslo', 'country': 'Norway', 'facility': 'Department of Gynecology, Oslo University Hospital Ullevål and Rikshospital', 'geoPoint': {'lat': 59.91273, 'lon': 10.74609}}], 'overallOfficials': [{'name': 'Marit Lieng, Phd', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Oslo University Hospital, Oslo, Norway'}]}, 'ipdSharingStatementModule': {'infoTypes': ['STUDY_PROTOCOL', 'SAP'], 'timeFrame': 'The data is planned to be made available within a year after the publication of all results.', 'ipdSharing': 'YES', 'description': 'We will share the values of all evaluated predictors in the model so that they can be used for re-calculation.', 'accessCriteria': 'Access will be granted upon request and evaluation of the intended use of the data. The intended use should primarily gain improved patient care and research into adenomyosis and a detailed protocol has to be submitted.'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Oslo University Hospital', 'class': 'OTHER'}, 'collaborators': [{'name': 'The Hospital of Vestfold', 'class': 'OTHER'}, {'name': 'University Hospital, Akershus', 'class': 'OTHER'}, {'name': 'St. Olavs Hospital', 'class': 'OTHER'}, {'name': 'Turku University Hospital', 'class': 'OTHER_GOV'}], 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Head of department, dept. of gynecology, Oslo University Hospital', 'investigatorFullName': 'Marit Lieng', 'investigatorAffiliation': 'Oslo University Hospital'}}}}