Viewing Study NCT05105620


Ignite Creation Date: 2025-12-25 @ 4:28 AM
Ignite Modification Date: 2025-12-26 @ 3:31 AM
Study NCT ID: NCT05105620
Status: COMPLETED
Last Update Posted: 2021-11-05
First Post: 2021-10-26
Is NOT Gene Therapy: False
Has Adverse Events: False

Brief Title: Deep Learning for Fluorescein Angiography and Optical Coherence Tomography Macular Thickness Map Image Translation
Sponsor:
Organization:

Raw JSON

{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D005128', 'term': 'Eye Diseases'}, {'id': 'D003930', 'term': 'Diabetic Retinopathy'}], 'ancestors': [{'id': 'D012164', 'term': 'Retinal Diseases'}, {'id': 'D003925', 'term': 'Diabetic Angiopathies'}, {'id': 'D014652', 'term': 'Vascular Diseases'}, {'id': 'D002318', 'term': 'Cardiovascular Diseases'}, {'id': 'D048909', 'term': 'Diabetes Complications'}, {'id': 'D003920', 'term': 'Diabetes Mellitus'}, {'id': 'D004700', 'term': 'Endocrine System Diseases'}]}, 'interventionBrowseModule': {'meshes': [{'id': 'D005451', 'term': 'Fluorescein Angiography'}, {'id': 'D041623', 'term': 'Tomography, Optical Coherence'}], 'ancestors': [{'id': 'D000792', 'term': 'Angiography'}, {'id': 'D003935', 'term': 'Diagnostic Techniques, Cardiovascular'}, {'id': 'D019937', 'term': 'Diagnostic Techniques and Procedures'}, {'id': 'D003933', 'term': 'Diagnosis'}, {'id': 'D003941', 'term': 'Diagnostic Techniques, Ophthalmological'}, {'id': 'D041622', 'term': 'Tomography, Optical'}, {'id': 'D061848', 'term': 'Optical Imaging'}, {'id': 'D003952', 'term': 'Diagnostic Imaging'}, {'id': 'D014054', 'term': 'Tomography'}, {'id': 'D008919', 'term': 'Investigative Techniques'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'CASE_ONLY'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 708}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2018-08-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2021-11', 'completionDateStruct': {'date': '2021-02-01', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2021-11-04', 'studyFirstSubmitDate': '2021-10-26', 'studyFirstSubmitQcDate': '2021-10-26', 'lastUpdatePostDateStruct': {'date': '2021-11-05', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2021-11-03', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2021-02-01', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Fréchet inception distance (FID) score.', 'timeFrame': '1 day'}]}, 'oversightModule': {'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['Eye Diseases', 'Diabetic Retinopathy']}, 'referencesModule': {'references': [{'pmid': '36050661', 'type': 'DERIVED', 'citation': 'Abdelmotaal H, Sharaf M, Soliman W, Wasfi E, Kedwany SM. Bridging the resources gap: deep learning for fluorescein angiography and optical coherence tomography macular thickness map image translation. BMC Ophthalmol. 2022 Sep 1;22(1):355. doi: 10.1186/s12886-022-02577-7.'}]}, 'descriptionModule': {'briefSummary': 'Diabetic macular edema (DME) is one of the leading causes of visual impairment in patients with diabetes. Fluorescein angiography (FA) plays an important role in diabetic retinopathy (DR) staging and evaluation of retinal vasculature. However, FA is an invasive technique and does not permit the precise visualization of the retinal vasculature. Optical coherence tomography (OCT) is a non-invasive technique that has become popular in diagnosing and monitoring DR and its laser, medical, and surgical treatment. It provides a quantitative assessment of retinal thickness and location of edema in the macula. Automated OCT retinal thickness maps are routinely used in monitoring DME and its response to treatment. However, standard OCT provides only structural information and therefore does not delineate blood flow within the retinal vasculature. By combining the physiological information in FA with the structural information in the OCT, zones of leakage can be correlated to structural changes in the retina for better evaluation and monitoring of the response of DME to different treatment modalities. The occasional unavailability of either imaging modality may impair decision-making during the follow-up of patients with DME.\n\nThe problem of medical data generation particularly images has been of great interest, and as such, it has been deeply studied in recent years especially with the advent of deep convolutional neural networks(DCNN), which are progressively becoming the standard approach in most machine learning tasks such as pattern recognition and image classification. Generative adversarial networks (GANs) are neural network models in which a generation and a discrimination networks are trained simultaneously. Integrated network performance effectively generates new plausible image samples.\n\nThe aim of this work is to assess the efficacy of a GAN implementing pix2pix image translation for original FA to synthetic OCT color-coded macular thickness map image translation and the reverse (from original OCT color-coded macular thickness map to synthetic FA image translation).'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['CHILD', 'ADULT', 'OLDER_ADULT'], 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Patients from the retina clinic in Assiut University Hospital who had simultaneously undergone same-day FA and OCT with a diagnosis of confirmed or suspected DME between Augyst 2018 and February 2021.', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Patients from the retina clinic in Assiut University Hospital who had simultaneously undergone same-day FA and OCT with a diagnosis of confirmed or suspected DME.\n\nExclusion Criteria:\n\n* Significant media opacity that obscured the view of the fundus\n* OCT images with high signal-to-noise ratio expressed by the device as"TopQ image quality," below 60\n* Vitreoretinal interface disease distorting the OCT thickness map.\n* Patients with concurrent ocular conditions interfering with blood flow\n* Patients with uveitic diseases\n* High myopia of more than -8.0 diopters.'}, 'identificationModule': {'nctId': 'NCT05105620', 'briefTitle': 'Deep Learning for Fluorescein Angiography and Optical Coherence Tomography Macular Thickness Map Image Translation', 'organization': {'class': 'OTHER', 'fullName': 'Assiut University'}, 'officialTitle': 'Bridging the Resources Gap: Deep Learning for Fluorescein Angiography and Optical Coherence Tomography Macular Thickness Map Image Translation', 'orgStudyIdInfo': {'id': '17300681'}}, 'armsInterventionsModule': {'interventions': [{'name': 'Fluorescein Angiography', 'type': 'DIAGNOSTIC_TEST', 'description': 'Fluorescein Angiography for pateints with diabetes using fundus camera (TRC-NW8F retinal camera; Topcon Corporation, Tokyo, Japan).'}, {'name': 'Optical coherence tomography', 'type': 'DIAGNOSTIC_TEST', 'description': 'Optical coherence tomography for pateints with diabetes using • Topcon DRI OCT Triton device (ver.10.13; Topcon Corporation, Tokyo, Japan).'}]}, 'contactsLocationsModule': {'locations': [{'city': 'Asyut', 'country': 'Egypt', 'facility': 'Assiut University', 'geoPoint': {'lat': 27.18096, 'lon': 31.18368}}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Assiut University', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Associate professor of Ophthalmology', 'investigatorFullName': 'Khaled Abdelazeem', 'investigatorAffiliation': 'Assiut University'}}}}