Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D009369', 'term': 'Neoplasms'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 176000}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '1979-01-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2023-12', 'completionDateStruct': {'date': '2021-12-31', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2023-12-11', 'studyFirstSubmitDate': '2023-12-04', 'studyFirstSubmitQcDate': '2023-12-04', 'lastUpdatePostDateStruct': {'date': '2023-12-15', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2023-12-12', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2021-12-31', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Mortality attributed to suicide or self-inflicted injury', 'timeFrame': '1979-2021', 'description': 'The main outcome was mortality attributed to suicide or self-inflicted injury after cancer diagnosis.'}]}, 'oversightModule': {'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['Cancer patients', 'Suicide risk', 'Prediction model', 'Meteorological factors'], 'conditions': ['Cancer']}, 'descriptionModule': {'briefSummary': "Previous studies have found that the suicide risk of cancer patients is influenced by socioeconomic factors, clinical characteristics, and environmental factors. But prediction model with multiple predictors for suicide risk in cancer patients is limited.\n\nThe aim of this study is to assess the association of socioeconomic factors, clinical characteristics and meteorological factors with cancer patients' suicide, based on retrospective cohorts, and to establish a suicide risk prediction model with multiple predictors for cancer patients.", 'detailedDescription': "Cancer is a serious public health concern, with almost 10 million people dying from cancer in 2020. Previous studies have reported that cancer patients are more likely to die by suicide than the general public, especially in the six months to one year following cancer diagnosis. Since suicide is a result of the interaction of various factors such as socioeconomic factors, clinical characteristics, and environmental factors, it is necessary to construct a multivariate prediction model to predict the suicide risk in cancer patients.\n\nA retrospective cohort of cancer patients based on the Surveillance, Epidemiology, and End Results (SEER) program database was used to assess the association of socioeconomic factors, clinical characteristics and meteorological factors with cancer patients' suicide, and to establish prediction model with multiple predictors for cancer patients. Another retrospective cohort conducted from Shandong Multi-Center Healthcare Big Data Platform (SMCHBDP) was used to verify the predictive ability and generalization ability of the prediction model."}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['CHILD', 'ADULT', 'OLDER_ADULT'], 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Cancer patients in the Surveillance, Epidemiology, and End Results (SEER) program database and Shandong Multi-Center Healthcare Big Data Platform (SMCHBDP).', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n1\\. Cancer patients in SEER database and SMCHBDP\n\nExclusion Criteria:\n\n1. No certain cause of death\n2. Missing area code\n3. Lost to follow-up'}, 'identificationModule': {'nctId': 'NCT06167720', 'briefTitle': 'Suicide Risk Prediction in Cancer Patients', 'organization': {'class': 'OTHER', 'fullName': 'Qianfoshan Hospital'}, 'officialTitle': 'Suicide Risk Prediction in Cancer Patients: a Retrospective Cohort Study', 'orgStudyIdInfo': {'id': 'YXLL-KY-2023(139)'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Cancer patients cohort in SEER database', 'description': "A retrospective cohort of cancer patients based on the Surveillance, Epidemiology, and End Results (SEER) program database was used to assess the association of socioeconomic factors, clinical characteristics and meteorological factors with cancer patients' suicide, and to establish prediction model with multiple predictors for cancer patient"}, {'label': 'Cancer patients cohort in SMCHBDP', 'description': 'Retrospective cohort conducted from Shandong Multi-Center Healthcare Big Data Platform (SMCHBDP) was used to verify the predictive ability and generalization ability of the prediction model.'}]}, 'contactsLocationsModule': {'locations': [{'zip': '250014', 'city': 'Jinan', 'state': 'Shandong', 'country': 'China', 'facility': 'The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital', 'geoPoint': {'lat': 36.66833, 'lon': 116.99722}}], 'overallOfficials': [{'name': 'Fang Tang, Doctor', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital'}]}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Fang Tang', 'class': 'OTHER'}, 'responsibleParty': {'type': 'SPONSOR_INVESTIGATOR', 'investigatorTitle': 'Doctor', 'investigatorFullName': 'Fang Tang', 'investigatorAffiliation': 'Qianfoshan Hospital'}}}}