Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D056833', 'term': 'Central Serous Chorioretinopathy'}, {'id': 'D003930', 'term': 'Diabetic Retinopathy'}, {'id': 'D002386', 'term': 'Cataract'}], 'ancestors': [{'id': 'D012164', 'term': 'Retinal Diseases'}, {'id': 'D005128', 'term': 'Eye Diseases'}, {'id': 'D003925', 'term': 'Diabetic Angiopathies'}, {'id': 'D014652', 'term': 'Vascular Diseases'}, {'id': 'D002318', 'term': 'Cardiovascular Diseases'}, {'id': 'D048909', 'term': 'Diabetes Complications'}, {'id': 'D003920', 'term': 'Diabetes Mellitus'}, {'id': 'D004700', 'term': 'Endocrine System Diseases'}, {'id': 'D007905', 'term': 'Lens Diseases'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 120}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'UNKNOWN', 'lastKnownStatus': 'NOT_YET_RECRUITING', 'startDateStruct': {'date': '2021-02-01', 'type': 'ESTIMATED'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2021-01', 'completionDateStruct': {'date': '2022-12-01', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2021-01-05', 'studyFirstSubmitDate': '2020-12-07', 'studyFirstSubmitQcDate': '2020-12-07', 'lastUpdatePostDateStruct': {'date': '2021-01-07', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2020-12-11', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2021-12-01', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Validation of Image classification by transfer learning algorithm', 'timeFrame': '1 year'}]}, 'oversightModule': {'isUsExport': False, 'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['Central Serous Chorioretinopathy', 'Diabetic Retinopathy', 'Cataract']}, 'descriptionModule': {'briefSummary': 'Deep learning allows you to classify images using a self-learning algorithm. Transfer learning builds on an existing self-learning algorithm to enable image classification with fewer images. In this study, this technique will be applied to different image modalities in different syndromes. Retrospective study design.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'maximumAge': '100 Years', 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Healthy and non-healthy subjects: extract data out of available images', 'healthyVolunteers': True, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Availability of images, which allow discrimination.\n\nExclusion Criteria:\n\n* No availability of clear data on disease differentiation'}, 'identificationModule': {'nctId': 'NCT04665102', 'acronym': 'IDLE', 'briefTitle': 'Pilot Study on Deep Learning in the Eye', 'organization': {'class': 'OTHER', 'fullName': 'CRG UZ Brussel'}, 'officialTitle': 'Validation of a Transfer Learning Deep Learning Algorithm for Image Classification in Multiple Pathologies', 'orgStudyIdInfo': {'id': 'IDLE1000'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'No pathology'}, {'label': 'Pathology', 'interventionNames': ['Other: Image classification using deep learning algorithm']}], 'interventions': [{'name': 'Image classification using deep learning algorithm', 'type': 'OTHER', 'description': 'Image classification using deep learning algorithm', 'armGroupLabels': ['Pathology']}]}, 'contactsLocationsModule': {'centralContacts': [{'name': 'Pieter Nelis', 'role': 'CONTACT', 'email': 'nelispieter@gmail.com', 'phone': '+32494354198'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'CRG UZ Brussel', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Researcher', 'investigatorFullName': 'Pieter Nelis', 'investigatorAffiliation': 'CRG UZ Brussel'}}}}