Viewing Study NCT06025305


Ignite Creation Date: 2025-12-25 @ 3:27 AM
Ignite Modification Date: 2025-12-26 @ 2:08 AM
Study NCT ID: NCT06025305
Status: ENROLLING_BY_INVITATION
Last Update Posted: 2023-10-18
First Post: 2023-08-30
Is NOT Gene Therapy: False
Has Adverse Events: False

Brief Title: Identifying Vulnerable CoronAry PLaqUes With Artificial IntElligence-assisted CT Angiography
Sponsor:
Organization:

Raw JSON

{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D003324', 'term': 'Coronary Artery Disease'}, {'id': 'D058226', 'term': 'Plaque, Atherosclerotic'}], 'ancestors': [{'id': 'D003327', 'term': 'Coronary Disease'}, {'id': 'D017202', 'term': 'Myocardial Ischemia'}, {'id': 'D006331', 'term': 'Heart Diseases'}, {'id': 'D002318', 'term': 'Cardiovascular Diseases'}, {'id': 'D001161', 'term': 'Arteriosclerosis'}, {'id': 'D001157', 'term': 'Arterial Occlusive Diseases'}, {'id': 'D014652', 'term': 'Vascular Diseases'}, {'id': 'D020763', 'term': 'Pathological Conditions, Anatomical'}, {'id': 'D013568', 'term': 'Pathological Conditions, Signs and Symptoms'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 2000}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'ENROLLING_BY_INVITATION', 'startDateStruct': {'date': '2023-07-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2023-10', 'completionDateStruct': {'date': '2025-12-31', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2023-10-16', 'studyFirstSubmitDate': '2023-08-30', 'studyFirstSubmitQcDate': '2023-09-05', 'lastUpdatePostDateStruct': {'date': '2023-10-18', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2023-09-06', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2024-12-31', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Sensitivity and specificity of AI-assisted coronary CT angiography on identifying vulnerable plaques compared to intravascular imaging', 'timeFrame': '1 day'}], 'secondaryOutcomes': [{'measure': 'Overall coronary plaque detection rate using intravascular ultrasound as reference standard', 'timeFrame': '1 day'}, {'measure': 'Total plaque volume', 'timeFrame': '1 day'}, {'measure': 'minimum lumen area measurement compared to intravascular ultrasound', 'timeFrame': '1 day'}]}, 'oversightModule': {'oversightHasDmc': True, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['artificial intelligence; coronary CT angiography; vulnerable plaque'], 'conditions': ['Coronary Artery Disease', 'Plaque, Atherosclerotic']}, 'referencesModule': {'references': [{'pmid': '37464183', 'type': 'BACKGROUND', 'citation': 'Follmer B, Williams MC, Dey D, Arbab-Zadeh A, Maurovich-Horvat P, Volleberg RHJA, Rueckert D, Schnabel JA, Newby DE, Dweck MR, Guagliumi G, Falk V, Vazquez Mezquita AJ, Biavati F, Isgum I, Dewey M. Roadmap on the use of artificial intelligence for imaging of vulnerable atherosclerotic plaque in coronary arteries. Nat Rev Cardiol. 2024 Jan;21(1):51-64. doi: 10.1038/s41569-023-00900-3. Epub 2023 Jul 18.'}, {'pmid': '36151312', 'type': 'BACKGROUND', 'citation': 'Gaba P, Gersh BJ, Muller J, Narula J, Stone GW. Evolving concepts of the vulnerable atherosclerotic plaque and the vulnerable patient: implications for patient care and future research. Nat Rev Cardiol. 2023 Mar;20(3):181-196. doi: 10.1038/s41569-022-00769-8. Epub 2022 Sep 23.'}, {'pmid': '35174219', 'type': 'RESULT', 'citation': 'Zhou F, Chen Q, Luo X, Cao W, Li Z, Zhang B, Schoepf UJ, Gill CE, Guo L, Gao H, Li Q, Shi Y, Tang T, Liu X, Wu H, Wang D, Xu F, Jin D, Huang S, Li H, Pan C, Gu H, Xie L, Wang X, Ye J, Jiang J, Zhao H, Fang X, Xu Y, Xing W, Li X, Yin X, Lu GM, Zhang LJ. Prognostic Value of Coronary CT Angiography-Derived Fractional Flow Reserve in Non-obstructive Coronary Artery Disease: A Prospective Multicenter Observational Study. Front Cardiovasc Med. 2022 Jan 31;8:778010. doi: 10.3389/fcvm.2021.778010. eCollection 2021.'}]}, 'descriptionModule': {'briefSummary': 'The goal of this observational study is to develop an automatic whole-process AI model to detect, quantify, and characterize plaques using coronary CT angiography in coronary artery disease patients. The main questions it aims to answer are:\n\n1. Whether the AI model enables to detect and quantify coronary plaques compared with intravascular ultrasound or expert readers;\n2. Whether the AI model enables to identify vulnerable plaques using intravascular ultrasound or optical coherence tomography as the reference standard.\n3. Whether the AI model enables to predict future adverse cardiac events in a large cohort of 10,000 patients with non-obstructive CAD.', 'detailedDescription': "Coronary artery disease (CAD) remains the leading cause of death worldwide. Atherosclerotic plaques play a pivotal role in CAD-related patient mortality. Thus, the detection, quantification, and characterization of coronary plaques are clinically significant for early prevention and interventions for CAD.\n\nCoronary CT angiography (CCTA) has emerged as a robust noninvasive tool for the evaluation of CAD. In clinical practice, the coronary plaque assessment is performed by a time-consuming manual process dependent on the clinician's experience and subjective visual interpretation. With the development of artificial intelligence, many automatic computer-aided methods have been proposed to post-process the CCTA images. However, previously proposed algorithms of plaque evaluation were not developed based on intravascular ultrasound (IVUS) or optical coherence tomography (OCT), which were regarded as the gold reference for plaque evaluation. Thus, we aimed to develop a deep learning model in a whole-process automatic and intelligent system on CCTA to detect, quantify, and characterize plaques using IVUS or OCT as reference standard. Then we will work on the validation in different clinical scenarios: (1) Validation of the accuracy of the new deep learning model; (2) Prognosis of the model in different populations with CAD.\n\nThe main questions it aims to answer are:\n\n1. Whether the AI model enables to detect and quantify coronary plaques compared with intravascular ultrasound or expert readers;\n2. Whether the AI model enables to identify vulnerable plaques using IVUS or OCT as the reference standard.\n3. Whether the AI model enables to predict future adverse cardiac events in a large cohort of 10,000 patients with non-obstructive coronary artery disease (China CT-FFR study 2)."}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'consecutive patients who first underwent CCTA and then Intravascular imaging in China', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Intravascular imaging (including intravascular ultrasound or optical coherence tomography) was performed within 3 months after CCTA;\n* No change in medications or clinical symptoms during CCTA and intravascular imaging examinations;\n* Coronary artery diameter stenosis of 30% to 90% on invasive coronary imaging.\n\nExclusion Criteria:\n\n* Image quality of CCTA or intravascular US was inadequate to analyze;\n* Intravascular imaging was performed after percutaneous coronary intervention (PCI) or pre-dilation of the target lesions;\n* Lesions could not be co-registered between CCTA and intravascular US;\n* Missing CCTA or intravascular US data'}, 'identificationModule': {'nctId': 'NCT06025305', 'acronym': 'VALUE', 'briefTitle': 'Identifying Vulnerable CoronAry PLaqUes With Artificial IntElligence-assisted CT Angiography', 'organization': {'class': 'OTHER', 'fullName': 'Jinling Hospital, China'}, 'officialTitle': 'Development and Validation of Multi-scale Deep Neural Network-Based CT Intelligent Diagnosis System for Coronary Vulnerable Plaques: A Chinese Multicenter Study', 'orgStudyIdInfo': {'id': '2023DZKY-058-01'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Patients who underwent coronary CT angiography and intravascular ultrasound within 3 months', 'interventionNames': ['Diagnostic Test: Intravascular imaging test']}, {'label': 'Patients who underwent coronary CT angiography and optical coherence tomography within 3 months', 'interventionNames': ['Diagnostic Test: Intravascular imaging test']}], 'interventions': [{'name': 'Intravascular imaging test', 'type': 'DIAGNOSTIC_TEST', 'description': 'Coronary artery disease patients first underwent CCTA and then intravascular imaging test within 3 months', 'armGroupLabels': ['Patients who underwent coronary CT angiography and intravascular ultrasound within 3 months', 'Patients who underwent coronary CT angiography and optical coherence tomography within 3 months']}]}, 'contactsLocationsModule': {'locations': [{'zip': '210018', 'city': 'Nanjing', 'state': 'Jiangsu', 'country': 'China', 'facility': 'Research Institute Of Medical Imaging Jinling Hospital', 'geoPoint': {'lat': 32.06167, 'lon': 118.77778}}], 'overallOfficials': [{'name': 'Longjiang Zhang, MD', 'role': 'STUDY_CHAIR', 'affiliation': 'Jinling Hospital, Medical School of Nanjing University, Nanjing,China'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Jinling Hospital, China', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Director, Head of Radiology, Principal Investigator', 'investigatorFullName': 'Zhang longjiang,MD', 'investigatorAffiliation': 'Jinling Hospital, China'}}}}