Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D045169', 'term': 'Severe Acute Respiratory Syndrome'}], 'ancestors': [{'id': 'D012141', 'term': 'Respiratory Tract Infections'}, {'id': 'D007239', 'term': 'Infections'}, {'id': 'D018352', 'term': 'Coronavirus Infections'}, {'id': 'D003333', 'term': 'Coronaviridae Infections'}, {'id': 'D030341', 'term': 'Nidovirales Infections'}, {'id': 'D012327', 'term': 'RNA Virus Infections'}, {'id': 'D014777', 'term': 'Virus Diseases'}, {'id': 'D012140', 'term': 'Respiratory Tract Diseases'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 8000}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2020-12-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2025-03', 'completionDateStruct': {'date': '2024-01-10', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2025-03-10', 'studyFirstSubmitDate': '2023-03-16', 'studyFirstSubmitQcDate': '2023-03-16', 'lastUpdatePostDateStruct': {'date': '2025-03-12', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2023-03-28', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2023-06-15', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'the implementation of prediction models', 'timeFrame': '24 months', 'description': 'tThe DataMart built will allow the creation of predictive models both for diagnosis of SARS-coV-2 pneumonia as well as death'}]}, 'oversightModule': {'oversightHasDmc': True, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['SARS-CoV-1 Infection']}, 'descriptionModule': {'briefSummary': 'The aim of the CORONA.BOT project is to exploit the Artificial Intelligence methods of Generator Real World Data Facility to automatically extract structured and unstructured data from hospital databases and to implement an early risk assessment (warning system) regarding the negative outcome for patients infected with SARS-CoV-2.\n\nThe objective of CORONABED.BOT is to analyze the care pathways of patients from the same cohort as CORONA.BOT, in order to identify the total length of stay, intensive care occupations and flows between departments, based on variables demographics and first entry clinics Early identification of patients with symptoms compatible with SARS-CoV-2 infection will enable more rapid activation of isolation procedures, contact monitoring/contact history and decisions on the most appropriate clinical pathway in terms of type of treatment and unit. Similarly, the identification of factors correlated with worse outcomes will allow more effective planning for the use of critical resources (such as intensive care and others).'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'samplingMethod': 'PROBABILITY_SAMPLE', 'studyPopulation': 'adult patients', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* adult patients (18 years of age or older)\n* admitted to the Gemelli and Columbus Polyclinic\n* diagnosis of SARS-CoV-2 infection (suspected cases will also be included).\n\nExclusion Criteria:\n\n* aaaa'}, 'identificationModule': {'nctId': 'NCT05787405', 'acronym': 'CORONABEDBOT', 'briefTitle': 'Early Diagnosis of Clinical Evolution From SARS-CoV-2', 'organization': {'class': 'OTHER', 'fullName': 'Fondazione Policlinico Universitario Agostino Gemelli IRCCS'}, 'officialTitle': 'CORONABED.BOT: an Automation Project Using Artificial Intelligence for Early Diagnosis of Clinical Evolution From SARS-CoV-2"', 'orgStudyIdInfo': {'id': 'CORONABED.BOT-COVID19- 3447'}}, 'armsInterventionsModule': {'interventions': [{'name': 'Artificial Intelligence methods', 'type': 'OTHER', 'description': 'The aim of the CORONA.BOT project is to exploit the Artificial Intelligence methods of Generator Real World Data Facility to automatically extract structured and unstructured data from hospital databases and to implement an early risk assessment (warning system) regarding the negative outcome for patients infected with SARS-CoV-2.'}]}, 'contactsLocationsModule': {'locations': [{'zip': '00168', 'city': 'Rome', 'country': 'Italy', 'facility': 'Fondazione Policlinico Gemelli', 'geoPoint': {'lat': 41.89193, 'lon': 12.51133}}], 'overallOfficials': [{'name': 'Rita Murri', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Fondazione Policlinico Universitario A. Gemelli, IRCCS'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Fondazione Policlinico Universitario Agostino Gemelli IRCCS', 'class': 'OTHER'}, 'responsibleParty': {'type': 'SPONSOR'}}}}