Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 284}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'RECRUITING', 'startDateStruct': {'date': '2025-01-09', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2025-09', 'completionDateStruct': {'date': '2027-07', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2025-09-19', 'studyFirstSubmitDate': '2024-12-13', 'studyFirstSubmitQcDate': '2024-12-13', 'lastUpdatePostDateStruct': {'date': '2025-09-23', 'type': 'ESTIMATED'}, 'studyFirstPostDateStruct': {'date': '2024-12-18', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2026-12', 'type': 'ESTIMATED'}}, 'outcomesModule': {'otherOutcomes': [{'measure': 'Graft patency at 1 year postoperatively.', 'timeFrame': 'At 1 year'}, {'measure': 'Adverse cardiovascular events, such as myocardial infarction and stroke, within 6 months postoperatively.', 'timeFrame': 'At 6 months'}, {'measure': 'Adverse cardiovascular events, such as myocardial infarction and stroke, within 12 months postoperatively.', 'timeFrame': 'At 12 months'}, {'measure': 'Surgeon-level subgroup: age', 'timeFrame': 'Baseline', 'description': 'Age subgroup is stratified into: \\<45, ≥45 years old'}, {'measure': 'Surgeon-level subgroup: sex', 'timeFrame': 'Baseline', 'description': 'Sex subgroup is stratified into: female, male'}, {'measure': 'Surgeon-level subgroup: professional title', 'timeFrame': 'Baseline', 'description': 'Professional title subgroup is stratified into: junior, associate, senior'}, {'measure': 'Surgeon-level subgroup: annual surgery volume', 'timeFrame': 'Baseline', 'description': 'Annual surgery volume subgroup is stratified by tertiles'}, {'measure': 'Surgeon-level subgroup: total surgery volume', 'timeFrame': 'Baseline', 'description': 'Total surgery volume subgroup is stratified by tertiles'}, {'measure': 'Surgeon-level subgroup: annual CABG volume', 'timeFrame': 'Baseline', 'description': 'Annual CABG volume subgroup is stratified by tertiles'}, {'measure': 'Surgeon-level subgroup: total CABG volume', 'timeFrame': 'Baseline', 'description': 'Total CABG volume subgroup is stratified by tertiles'}, {'measure': 'Patient-level subgroup: age', 'timeFrame': 'Baseline', 'description': 'Age subgroup is stratified into: \\<65, ≥65 years old'}, {'measure': 'Patient-level subgroup: sex', 'timeFrame': 'Baseline', 'description': 'Sex subgroup is stratified into: female, male'}, {'measure': 'Patient-level subgroup: the severity of coronary artery disease', 'timeFrame': 'Baseline', 'description': 'The severity of coronary artery disease is measured by SYNTAX score and is stratified into: \\<23, 23-32, \\>32'}], 'primaryOutcomes': [{'measure': 'Consistency assessment between AI surgical evaluation scores and human expert scores.', 'timeFrame': 'At the end of enrollment'}], 'secondaryOutcomes': [{'measure': 'Intraoperative measurement of graft flow and flow resistance.', 'timeFrame': 'After enrollment'}, {'measure': "Characteristics of the surgeon's motion trajectory.", 'timeFrame': 'After enrollment'}, {'measure': 'Consistency assessment between AI surgical evaluation scores levels and human expert scores levels.', 'timeFrame': 'After enrollment', 'description': 'AI surgical evaluation scores levels were divided into the following 3 score levels: low, middle, high; human expert scores levels were divided into the following 3 score levels: low, middle, high.'}]}, 'oversightModule': {'isUsExport': False, 'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['CABG-patients', 'CABG', 'Cardiovascular Surgery', 'Surgeons', 'Artificial Intelligence (AI)']}, 'descriptionModule': {'briefSummary': 'The goal of this study aims to investigate the use of artificial intelligence to analyze and evaluate the characteristics and proficiency of surgeons during vascular anastomosis in coronary artery bypass grafting (CABG) procedures. The main question it aims to answer is:\n\nConsistency assessment between AI evaluation scores and human expert evaluation scores for surgeons during left anterior descending (LAD) artery anastomosis.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'The study population consists of adult patients who meet the inclusion criteria of being aged 18 years or older, undergoing their first isolated coronary artery bypass grafting (CABG) surgery using internal mammary artery-to-left anterior descending artery bypass grafting. All participants should signed written informed consent prior to inclusion in the study.\n\nExclusion criteria include patients with acute coronary syndrome, contraindications to coronary CT angiography or coronary angiography, and those with renal insufficiency or active liver disease. Specifically, patients with persistently elevated serum transaminases of unknown cause or those with any serum transaminase levels exceeding three times the upper limit of normal will also be excluded from the study.', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Age ≥ 18 years\n* Undergoing internal mammary artery-to-left anterior descending artery bypass grafting\n* First-time recipient of isolated CABG surgery\n* Signed written informed consent\n\nExclusion Criteria:\n\n* Patients with acute coronary syndrome\n* Patients with contraindications to coronary CT angiography or coronary angiography\n* Patients with renal insufficiency or active liver disease, including those with persistently elevated serum transaminases of unknown cause or any serum transaminase levels exceeding three times the upper limit of normal.'}, 'identificationModule': {'nctId': 'NCT06739005', 'acronym': 'CAMERA', 'briefTitle': "AI Model for Assessing Cardiac Surgeons' Techniques", 'organization': {'class': 'OTHER_GOV', 'fullName': 'China National Center for Cardiovascular Diseases'}, 'officialTitle': 'artifiCiAl Intelligence Model for Evaluating the Surgical Techniques of caRdiAc Surgeons (CAMERA)', 'orgStudyIdInfo': {'id': '2024-ZX070'}}, 'contactsLocationsModule': {'locations': [{'zip': '100037', 'city': 'Beijing', 'state': 'Beijing Municipality', 'status': 'RECRUITING', 'country': 'China', 'contacts': [{'name': 'Xin Yuan, MD, PhD', 'role': 'CONTACT', 'email': 'yuanxinfuwai@163.com', 'phone': '8601060866517'}], 'facility': 'Fuwai Hospital, CAMS & PUMC', 'geoPoint': {'lat': 39.9075, 'lon': 116.39723}}], 'centralContacts': [{'name': 'Lihua Zhang, M.D, Ph.D', 'role': 'CONTACT', 'email': 'zhanglihua@fuwai.com', 'phone': '8613641359895'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'UNDECIDED'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'China National Center for Cardiovascular Diseases', 'class': 'OTHER_GOV'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Academician of Chinese Academy of Engineering President, Fuwai Hospital Director, National Center for Cardiovascular Diseases Director, NCRC Director, State Key Laboratory of Cardiovascular Disease Chairman, China Heart Congress (CHC) Former President', 'investigatorFullName': 'Shengshou Hu', 'investigatorAffiliation': 'China National Center for Cardiovascular Diseases'}}}}