Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D000070642', 'term': 'Brain Injuries, Traumatic'}, {'id': 'D013345', 'term': 'Subarachnoid Hemorrhage'}], 'ancestors': [{'id': 'D001930', 'term': 'Brain Injuries'}, {'id': 'D001927', 'term': 'Brain Diseases'}, {'id': 'D002493', 'term': 'Central Nervous System Diseases'}, {'id': 'D009422', 'term': 'Nervous System Diseases'}, {'id': 'D006259', 'term': 'Craniocerebral Trauma'}, {'id': 'D020196', 'term': 'Trauma, Nervous System'}, {'id': 'D014947', 'term': 'Wounds and Injuries'}, {'id': 'D020300', 'term': 'Intracranial Hemorrhages'}, {'id': 'D002561', 'term': 'Cerebrovascular Disorders'}, {'id': 'D014652', 'term': 'Vascular Diseases'}, {'id': 'D002318', 'term': 'Cardiovascular Diseases'}, {'id': 'D006470', 'term': 'Hemorrhage'}, {'id': 'D010335', 'term': 'Pathologic Processes'}, {'id': 'D013568', 'term': 'Pathological Conditions, Signs and Symptoms'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 20}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2009-02'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2015-08', 'completionDateStruct': {'date': '2011-12', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2015-08-17', 'studyFirstSubmitDate': '2008-12-11', 'studyFirstSubmitQcDate': '2008-12-11', 'lastUpdatePostDateStruct': {'date': '2015-08-18', 'type': 'ESTIMATED'}, 'studyFirstPostDateStruct': {'date': '2008-12-12', 'type': 'ESTIMATED'}, 'primaryCompletionDateStruct': {'date': '2011-07', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Evaluate the "optimal CPP", defined by PRx, corresponds to the acceptable CBF values', 'timeFrame': 'one week'}], 'secondaryOutcomes': [{'measure': 'Compare in cohort group PRx/CPP curve to CBFx/CPP curve.The "CBFx" index is defined as the moving correlation between slow waves in CPP and CBF', 'timeFrame': 'one week'}]}, 'oversightModule': {'oversightHasDmc': False}, 'conditionsModule': {'keywords': ['SAH', 'TBI'], 'conditions': ['Traumatic Brain Injury', 'Subarachnoid Hemorrhage']}, 'referencesModule': {'references': [{'pmid': '15090970', 'type': 'BACKGROUND', 'citation': 'Claassen J, Vu A, Kreiter KT, Kowalski RG, Du EY, Ostapkovich N, Fitzsimmons BF, Connolly ES, Mayer SA. Effect of acute physiologic derangements on outcome after subarachnoid hemorrhage. Crit Care Med. 2004 Mar;32(3):832-8. doi: 10.1097/01.ccm.0000114830.48833.8a.'}, {'pmid': '15716852', 'type': 'BACKGROUND', 'citation': 'Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005 Jun;25(6):763-74. doi: 10.1038/sj.jcbfm.9600073.'}, {'pmid': '14747747', 'type': 'BACKGROUND', 'citation': 'Coles JP, Fryer TD, Smielewski P, Chatfield DA, Steiner LA, Johnston AJ, Downey SP, Williams GB, Aigbirhio F, Hutchinson PJ, Rice K, Carpenter TA, Clark JC, Pickard JD, Menon DK. Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab. 2004 Feb;24(2):202-11. doi: 10.1097/01.WCB.0000103022.98348.24.'}, {'pmid': '15145991', 'type': 'BACKGROUND', 'citation': 'Czosnyka M, Pickard JD. Monitoring and interpretation of intracranial pressure. J Neurol Neurosurg Psychiatry. 2004 Jun;75(6):813-21. doi: 10.1136/jnnp.2003.033126.'}, {'pmid': '11014420', 'type': 'BACKGROUND', 'citation': 'Lam JM, Smielewski P, Czosnyka M, Pickard JD, Kirkpatrick PJ. Predicting delayed ischemic deficits after aneurysmal subarachnoid hemorrhage using a transient hyperemic response test of cerebral autoregulation. Neurosurgery. 2000 Oct;47(4):819-25; discussions 825-6. doi: 10.1097/00006123-200010000-00004.'}, {'pmid': '10406006', 'type': 'BACKGROUND', 'citation': "Hutchinson PJ, Al-Rawi PG, O'Connell MT, Gupta AK, Maskell LB, Hutchinson DB, Pickard JD, Kirkpatrick PJ. Monitoring of brain metabolism during aneurysm surgery using microdialysis and brain multiparameter sensors. Neurol Res. 1999 Jun;21(4):352-8. doi: 10.1080/01616412.1999.11740943."}, {'pmid': '17029347', 'type': 'BACKGROUND', 'citation': 'Weyer GW, Nolan CP, Macdonald RL. Evidence-based cerebral vasospasm management. Neurosurg Focus. 2006 Sep 15;21(3):E8. doi: 10.3171/foc.2006.21.3.8.'}, {'pmid': '8469328', 'type': 'BACKGROUND', 'citation': 'Longstreth WT Jr, Nelson LM, Koepsell TD, van Belle G. Clinical course of spontaneous subarachnoid hemorrhage: a population-based study in King County, Washington. Neurology. 1993 Apr;43(4):712-8. doi: 10.1212/wnl.43.4.712.'}, {'pmid': '3696399', 'type': 'BACKGROUND', 'citation': 'Biller J, Toffol GJ, Kassell NF, Adams HP Jr, Beck DW, Boarini DJ. Spontaneous subarachnoid hemorrhage in young adults. Neurosurgery. 1987 Nov;21(5):664-7. doi: 10.1227/00006123-198711000-00011.'}, {'pmid': '8614919', 'type': 'BACKGROUND', 'citation': 'Linn FH, Rinkel GJ, Algra A, van Gijn J. Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. Stroke. 1996 Apr;27(4):625-9. doi: 10.1161/01.str.27.4.625.'}, {'pmid': '11748413', 'type': 'BACKGROUND', 'citation': 'Robertson CS. Management of cerebral perfusion pressure after traumatic brain injury. Anesthesiology. 2001 Dec;95(6):1513-7. doi: 10.1097/00000542-200112000-00034. No abstract available.'}, {'pmid': '15739560', 'type': 'BACKGROUND', 'citation': 'Howells T, Elf K, Jones PA, Ronne-Engstrom E, Piper I, Nilsson P, Andrews P, Enblad P. Pressure reactivity as a guide in the treatment of cerebral perfusion pressure in patients with brain trauma. J Neurosurg. 2005 Feb;102(2):311-7. doi: 10.3171/jns.2005.102.2.0311.'}, {'pmid': '12870270', 'type': 'BACKGROUND', 'citation': 'Soehle M, Jaeger M, Meixensberger J. Online assessment of brain tissue oxygen autoregulation in traumatic brain injury and subarachnoid hemorrhage. Neurol Res. 2003 Jun;25(4):411-7. doi: 10.1179/016164103101201580.'}, {'pmid': '17272764', 'type': 'BACKGROUND', 'citation': 'Jaeger M, Schuhmann MU, Soehle M, Nagel C, Meixensberger J. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction. Stroke. 2007 Mar;38(3):981-6. doi: 10.1161/01.STR.0000257964.65743.99. Epub 2007 Feb 1.'}, {'pmid': '12816269', 'type': 'BACKGROUND', 'citation': 'Vajkoczy P, Horn P, Thome C, Munch E, Schmiedek P. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003 Jun;98(6):1227-34. doi: 10.3171/jns.2003.98.6.1227.'}, {'pmid': '10930012', 'type': 'BACKGROUND', 'citation': 'Vajkoczy P, Roth H, Horn P, Lucke T, Thome C, Hubner U, Martin GT, Zappletal C, Klar E, Schilling L, Schmiedek P. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000 Aug;93(2):265-74. doi: 10.3171/jns.2000.93.2.0265.'}, {'pmid': '11157189', 'type': 'BACKGROUND', 'citation': 'Vajkoczy P, Horn P, Bauhuf C, Munch E, Hubner U, Ing D, Thome C, Poeckler-Schoeninger C, Roth H, Schmiedek P. Effect of intra-arterial papaverine on regional cerebral blood flow in hemodynamically relevant cerebral vasospasm. Stroke. 2001 Feb;32(2):498-505. doi: 10.1161/01.str.32.2.498.'}, {'pmid': '11565860', 'type': 'BACKGROUND', 'citation': 'Thome C, Vajkoczy P, Horn P, Bauhuf C, Hubner U, Schmiedek P. Continuous monitoring of regional cerebral blood flow during temporary arterial occlusion in aneurysm surgery. J Neurosurg. 2001 Sep;95(3):402-11. doi: 10.3171/jns.2001.95.3.0402.'}]}, 'descriptionModule': {'briefSummary': 'It is a "proof of concept" study, aimed to evaluate whether the "optimal CPP", defined by the best PRx, corresponds to the acceptable CBF values in patients affected by CBF disfunction caused by TBI or SAH.', 'detailedDescription': 'Cerebral blood flow (CBF) disturbances are common following TBI and SAH. The occurrence of CBF derangements is detrimental for the neurological outcome in both settings, but the management of neurologically critically ill patients does not involve CBF measure routinely. Cerebrovascular autoregulation, can be assessed by the cerebrovascular pressure-reactivity index (PRx) that point out the response of ICP to spontaneous changes in arterial blood pressure (ABP). Autoregulation has been proven to be a powerful protective mechanism. Adding together the information on CBF and autoregulation, might drive clinical strategy in exceptionally noteworthy and innovative way. Currently, a novel Thermal Diffusion (TDP) microprobe has been introduced for the continuous bedside monitoring of regional CBF: TDP is a promising technique in the reliable detection of flow derangements at the patient\'s bedside.\n\nIt is a "proof of concept" study, aimed to evaluate whether the "optimal CPP", defined by the best PRx, corresponds to the acceptable CBF values.\n\nPatients admitted with the diagnosis of TBI and SAH in for whom ICP and CPP needs to be monitored on clinical ground will be also monitored with a TD probe and routinely tested for cerebral autoregulation, thus obtaining the CBF corresponding at a given the "best CPP" and autoregulation status.\n\nContinuous CBF measures and PRx monitoring may allow more accurate identification and early detection of adverse cerebral conditions. This approach may bring us a step closer to the goal of outcome improvements in patients suffering from intracranial insult.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['CHILD', 'ADULT', 'OLDER_ADULT'], 'minimumAge': '16 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Patients admitted with the diagnosis of TBI and SAH in for whom ICP and CPP needs to be monitored on clinical ground will be also monitored with a TD probe and routinely tested for cerebral autoregulation, thus obtaining the CBF corresponding at a given the "best CPP" and autoregulation status. Continuous CBF measures and PRx monitoring may allow more accurate identification and early detection of adverse cerebral conditions. This approach may bring us a step closer to the goal of outcome improvements in patients suffering from intracranial insult.', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion criteria:\n\n* Patients admitted with the diagnosis of SAH and requiring intensive monitoring, and ICP probe.\n* Patients admitted diagnosis of severe TBI and requiring intensive monitoring, and ICP probe.\n\nExclusion criteria:\n\n* Age \\< 16 years\n* Previous SAH, brain surgery, stroke, brain trauma'}, 'identificationModule': {'nctId': 'NCT00807833', 'briefTitle': 'Cerebral Blood Flow (CBF) Disturbances Following Traumatic Brain Injury (TBI) and Subarachnoid Hemorrhage (SAH)', 'organization': {'class': 'OTHER', 'fullName': 'Azienda Ospedaliera San Gerardo di Monza'}, 'officialTitle': 'Cerebral Blood Flow (CBF) Disturbances Following Traumatic Brain Injury (TBI) and Subarachnoid Hemorrhage (SAH)', 'orgStudyIdInfo': {'id': '08-007'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'CBF measurement', 'description': 'It is a "proof of concept" study, aimed to evaluate whether the "optimal CPP", defined by the best PRx, corresponds to the acceptable CBF values.\n\nPatients admitted with the diagnosis of TBI and SAH in for whom ICP and CPP needs to be monitored on clinical ground will be also monitored with a TD probe and routinely tested for cerebral autoregulation, thus obtaining the CBF corresponding at a given the "best CPP" and autoregulation status.'}]}, 'contactsLocationsModule': {'locations': [{'zip': '20052', 'city': 'Monza', 'state': 'Italy', 'country': 'Italy', 'facility': 'Azienda Ospedaliera San Gerardo', 'geoPoint': {'lat': 45.58005, 'lon': 9.27246}}], 'overallOfficials': [{'name': 'Giuseppe Citerio, DM', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Azienda Ospedaliera San Gerardo Monza'}]}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Azienda Ospedaliera San Gerardo di Monza', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'MD', 'investigatorFullName': 'Dott. Giuseppe Citerio', 'investigatorAffiliation': 'Azienda Ospedaliera San Gerardo di Monza'}}}}