Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D009765', 'term': 'Obesity'}, {'id': 'D003924', 'term': 'Diabetes Mellitus, Type 2'}], 'ancestors': [{'id': 'D050177', 'term': 'Overweight'}, {'id': 'D044343', 'term': 'Overnutrition'}, {'id': 'D009748', 'term': 'Nutrition Disorders'}, {'id': 'D009750', 'term': 'Nutritional and Metabolic Diseases'}, {'id': 'D001835', 'term': 'Body Weight'}, {'id': 'D012816', 'term': 'Signs and Symptoms'}, {'id': 'D013568', 'term': 'Pathological Conditions, Signs and Symptoms'}, {'id': 'D003920', 'term': 'Diabetes Mellitus'}, {'id': 'D044882', 'term': 'Glucose Metabolism Disorders'}, {'id': 'D008659', 'term': 'Metabolic Diseases'}, {'id': 'D004700', 'term': 'Endocrine System Diseases'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'PROSPECTIVE', 'observationalModel': 'COHORT'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 800}, 'targetDuration': '5 Years', 'patientRegistry': True}, 'statusModule': {'overallStatus': 'RECRUITING', 'startDateStruct': {'date': '2024-01-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2025-07', 'completionDateStruct': {'date': '2027-12-31', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2025-07-31', 'studyFirstSubmitDate': '2023-12-05', 'studyFirstSubmitQcDate': '2023-12-05', 'lastUpdatePostDateStruct': {'date': '2025-08-03', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2023-12-13', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2026-12-31', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Area under curve (AUC) of the weight loss prediction model after 1 year', 'timeFrame': '1 year', 'description': 'This metric shows the discriminatory ability of the radiomic model to predict the probability of inadequate weight loss after 1 year.'}, {'measure': 'Area under curve (AUC) of the T2DM remission prediction model after 1 year', 'timeFrame': '1 year', 'description': 'This metric shows the discriminatory ability of the radiomic model to predict the probability of remission of T2DM after 1 year.'}], 'secondaryOutcomes': [{'measure': 'Area under curve (AUC) of the weight loss prediction model after 3 years', 'timeFrame': '3 years', 'description': 'This metric shows the discriminatory ability of the radiomic model to predict the probability of inadequate weight loss after 3 years.'}, {'measure': 'Area under curve (AUC) of the T2DM remission prediction model after 3 years', 'timeFrame': '3 years', 'description': 'This metric shows the discriminatory ability of the radiomic model to predict the probability of remission of T2DM after 3 years.'}, {'measure': 'Area under curve (AUC) of the weight loss prediction model after 5 years', 'timeFrame': '5 years', 'description': 'This metric shows the discriminatory ability of the radiomic model to predict the probability of inadequate weight loss after 5 years.'}, {'measure': 'Area under curve (AUC) of the T2DM remission prediction model after 5 years', 'timeFrame': '5 years', 'description': 'This metric shows the discriminatory ability of the radiomic model to predict the probability of remission of T2DM after 5 years.'}, {'measure': 'Area under curve (AUC) of the weight regain model', 'timeFrame': '5 years', 'description': 'This metric shows the discriminatory ability of the radiomic model to predict the probability of weight regain.'}, {'measure': 'Area under curve (AUC) of the T2DM relapse model', 'timeFrame': '5 years', 'description': 'This metric shows the discriminatory ability of the radiomic model to predict the probability of T2DM relapse.'}]}, 'oversightModule': {'oversightHasDmc': True, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['Obesity', 'Type 2 Diabetes Mellitus', 'Radiomics', 'Abdominal adipose', 'Subcutaneous adipose', 'Prediction model'], 'conditions': ['Obesity', 'Type 2 Diabetes Mellitus', 'Bariatric Surgery']}, 'descriptionModule': {'briefSummary': 'Using radiomics of intra-abdominal and subcutaneous adipose tissue and clinical features to predict the weight loss efficacy and remission of type 2 diabetes mellitus after bariatric surgery.', 'detailedDescription': 'In this study, the investigator intend to collect abdominal CT from patients who are proposed to undergo bariatric surgery, to extract the radiomics of intra-abdominal fat and subcutaneous fat, and to establish a prediction model for predicting the efficacy of weight loss and remission of type 2 diabetes mellitus at 1 year, 3 years, and 5 years postoperatively, in conjunction with the clinical data.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['CHILD', 'ADULT', 'OLDER_ADULT'], 'maximumAge': '70 Years', 'minimumAge': '16 Years', 'samplingMethod': 'PROBABILITY_SAMPLE', 'studyPopulation': 'Obese patients with type 2 diabetes who will undergo bariatric surgery (sleeve gastrectomy or Roux-en-Y gastric bypass) and receive abdominal CT scan will be included in the study.', 'eligibilityCriteria': 'Inclusion Criteria:\n\n* BMI\\>27.5kg/m2; Type 2 diabetes mellitus; Patients who will undergo bariatric surgery\n\nExclusion Criteria:\n\n* Patients without abdominal CT scan; Patients did not undergo sleeve gastrectomy or Roux-en-Y gastric bypass.'}, 'identificationModule': {'nctId': 'NCT06169033', 'briefTitle': 'Radiomics of Intra-abdominal and Subcutaneous Adipose Tissue Predict the Efficacy of Bariatric Surgery (RISABS)', 'organization': {'class': 'OTHER', 'fullName': 'China-Japan Friendship Hospital'}, 'officialTitle': 'Radiomics of Intra-abdominal and Subcutaneous Adipose Tissue Predict the Efficacy of Bariatric Surgery (RISABS)', 'orgStudyIdInfo': {'id': 'CJBariatric002'}}, 'contactsLocationsModule': {'locations': [{'zip': '100029', 'city': 'Beijing', 'status': 'RECRUITING', 'country': 'China', 'contacts': [{'name': 'Yuntao Nie, M.D.', 'role': 'CONTACT', 'email': 'nytnyt1231@163.com', 'phone': '+8618611835860'}, {'name': 'Hua Meng, M.D.', 'role': 'CONTACT', 'email': 'menghuade@hotmail.com', 'phone': '+8618611457779'}, {'name': 'Yuntao Nie, M.D.', 'role': 'PRINCIPAL_INVESTIGATOR'}], 'facility': 'Yuntao Nie', 'geoPoint': {'lat': 39.9075, 'lon': 116.39723}}], 'centralContacts': [{'name': 'Yuntao Nie, M.D.', 'role': 'CONTACT', 'email': 'nytnyt1231@163.com', 'phone': '+8618611835860'}, {'name': 'Hua Meng, M.D.', 'role': 'CONTACT', 'email': 'menghuade@hotmail.com', 'phone': '+8618611457779'}], 'overallOfficials': [{'name': 'Yuntao Nie, M.D.', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'China-Japan Friendship Hospital'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'UNDECIDED', 'description': 'Subject information involves medical and personal privacy and access is subject to the consent of the principal investigator.'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'China-Japan Friendship Hospital', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Principal Investigator', 'investigatorFullName': 'Yuntao Nie', 'investigatorAffiliation': 'China-Japan Friendship Hospital'}}}}