Viewing Study NCT04937959


Ignite Creation Date: 2025-12-24 @ 2:28 PM
Ignite Modification Date: 2026-01-06 @ 1:49 PM
Study NCT ID: NCT04937959
Status: UNKNOWN
Last Update Posted: 2022-04-07
First Post: 2021-06-17
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Amyloid Prediction in Early Stage Alzheimer's Disease Through Speech Phenotyping - PAST Extension
Sponsor:
Organization:

Raw JSON

{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D000544', 'term': 'Alzheimer Disease'}, {'id': 'D060825', 'term': 'Cognitive Dysfunction'}, {'id': 'D013060', 'term': 'Speech'}, {'id': 'D007802', 'term': 'Language'}], 'ancestors': [{'id': 'D003704', 'term': 'Dementia'}, {'id': 'D001927', 'term': 'Brain Diseases'}, {'id': 'D002493', 'term': 'Central Nervous System Diseases'}, {'id': 'D009422', 'term': 'Nervous System Diseases'}, {'id': 'D024801', 'term': 'Tauopathies'}, {'id': 'D019636', 'term': 'Neurodegenerative Diseases'}, {'id': 'D019965', 'term': 'Neurocognitive Disorders'}, {'id': 'D001523', 'term': 'Mental Disorders'}, {'id': 'D003072', 'term': 'Cognition Disorders'}, {'id': 'D014705', 'term': 'Verbal Behavior'}, {'id': 'D003142', 'term': 'Communication'}, {'id': 'D001519', 'term': 'Behavior'}]}}, 'protocolSection': {'designModule': {'studyType': 'OBSERVATIONAL', 'designInfo': {'timePerspective': 'RETROSPECTIVE', 'observationalModel': 'CASE_CONTROL'}, 'enrollmentInfo': {'type': 'ESTIMATED', 'count': 40}, 'patientRegistry': False}, 'statusModule': {'overallStatus': 'UNKNOWN', 'lastKnownStatus': 'RECRUITING', 'startDateStruct': {'date': '2021-01-22', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2021-06', 'completionDateStruct': {'date': '2022-08-30', 'type': 'ESTIMATED'}, 'lastUpdateSubmitDate': '2022-04-06', 'studyFirstSubmitDate': '2021-06-17', 'studyFirstSubmitQcDate': '2021-06-23', 'lastUpdatePostDateStruct': {'date': '2022-04-07', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2021-06-24', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2022-08-30', 'type': 'ESTIMATED'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'The area under the curve (AUC) of the receiver operating characteristic (ROC) curve of the binary classifier distinguishing between amyloid positive (Arms 1 and 3) and amyloid negative (Arms 2 and 4) arms.', 'timeFrame': 'Up to 85 years', 'description': 'Using archival spoken or written language samples as input.'}], 'secondaryOutcomes': [{'measure': 'The sensitivity of the binary classifier distinguishing between amyloid positive (Arms 1 and 3) and amyloid negative (Arms 2 and 4) arms using archival spoken or written language samples as input.', 'timeFrame': 'Up to 85 years'}, {'measure': 'The specificity of the binary classifier distinguishing between amyloid positive (Arms 1 and 3) and amyloid negative (Arms 2 and 4) arms using archival spoken or written language samples as input.', 'timeFrame': 'Up to 85 years'}, {'measure': "The Cohen's kappa of the binary classifier distinguishing between amyloid positive (Arms 1 and 3) and amyloid negative (Arms 2 and 4) arms using archival spoken or written language samples as input.", 'timeFrame': 'Up to 85 years'}, {'measure': 'The AUC of the binary classifiers distinguishing between MCI and cognitively normal (CN) arms.', 'timeFrame': 'Up to 85 years', 'description': 'Using archival spoken or written language samples as input in the following bins: 0-5 years, 5-10 years, 10-15 years, 15-20 years, 20-25 years before MCI diagnosis.'}, {'measure': 'The sensitivity of the binary classifiers distinguishing between MCI and cognitively normal (CN) arms.', 'timeFrame': 'Up to 85 years', 'description': 'Using archival spoken or written language samples as input in the following bins: 0-5 years, 5-10 years, 10-15 years, 15-20 years, 20-25 years before MCI diagnosis.'}, {'measure': 'The specificity of the binary classifiers distinguishing between MCI and cognitively normal (CN) arms.', 'timeFrame': 'Up to 85 years', 'description': 'Using archival spoken or written language samples as input in the following bins: 0-5 years, 5-10 years, 10-15 years, 15-20 years, 20-25 years before MCI diagnosis.'}, {'measure': "The Cohen's kappa of the binary classifiers distinguishing between MCI and cognitively normal (CN) arms.", 'timeFrame': 'Up to 85 years', 'description': 'Using archival spoken or written language samples as input in the following bins: 0-5 years, 5-10 years, 10-15 years, 15-20 years, 20-25 years before MCI diagnosis.'}, {'measure': 'The AUC of the binary classifier distinguishing between amyloid positive (Arms 1 and 3) and amyloid negative (Arms 2 and 4) arms.', 'timeFrame': 'Up to 85 years', 'description': 'Using archival spoken or written language samples as input in the following bins: younger than 50, 50-55, 55-60, 65-70, 70-75 years old.'}, {'measure': 'The sensitivity of the binary classifier distinguishing between amyloid positive (Arms 1 and 3) and amyloid negative (Arms 2 and 4) arms.', 'timeFrame': 'Up to 85 years', 'description': 'Using archival spoken or written language samples as input in the following bins: younger than 50, 50-55, 55-60, 65-70, 70-75 years old.'}, {'measure': 'The specificity of the binary classifier distinguishing between amyloid positive (Arms 1 and 3) and amyloid negative (Arms 2 and 4) arms.', 'timeFrame': 'Up to 85 years', 'description': 'Using archival spoken or written language samples as input in the following bins: younger than 50, 50-55, 55-60, 65-70, 70-75 years old.'}, {'measure': "The Cohen's kappa of the binary classifier distinguishing between amyloid positive (Arms 1 and 3) and amyloid negative (Arms 2 and 4) arms.", 'timeFrame': 'Up to 85 years', 'description': 'Using archival spoken or written language samples as input in the following bins: younger than 50, 50-55, 55-60, 65-70, 70-75 years old.'}]}, 'oversightModule': {'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ["Alzheimer's disease", "Preclinical Alzheimer's disease", "Prodromal Alzheimer's disease", 'Mild Cognitive Impairment', 'Normal Cognition', 'Amyloid', 'Speech', 'Acoustic', 'Language', 'Linguistic', 'Machine Learning', 'Artificial Intelligence'], 'conditions': ['Alzheimer Disease', "Alzheimer's Disease (Incl Subtypes)", "Preclinical Alzheimer's Disease", "Prodromal Alzheimer's Disease", 'Mild Cognitive Impairment', 'Normal Cognition']}, 'descriptionModule': {'briefSummary': "The primary objective of the study is to evaluate whether a set of algorithms analysing acoustic and linguistic patterns of speech can detect amyloid-specific cognitive impairment in early stage Alzheimer's disease, based on archival spoken or written language samples, as measured by the area under the curve (AUC) of the receiver operating characteristic curve of the binary classifier distinguishing between amyloid positive and amyloid negative arms. Secondary objectives include (1) evaluating how many years before diagnosis of Mild Cognitive Impairment (MCI) such algorithms work, as measured on binary classifier performance of the classifiers trained to classify MCI vs cognitively normal (CN) arms using archival material from the following time bins before MCI diagnosis: 0-5 years, 5-10 years, 10-15 years, 15-20 years, 20-25 years; (2) evaluating at what age such algorithms can detect later amyloid positivity, as measured on binary classifier performance of the classifiers trained to classify amyloid positive vs amyloid negative arms using archival material from the following age bins: younger than 50, 50-55, 55-60, 65-70, 70-75 years old."}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'maximumAge': '85 Years', 'minimumAge': '50 Years', 'samplingMethod': 'NON_PROBABILITY_SAMPLE', 'studyPopulation': 'Participants will be identified from participants of the AMYPRED-US study.', 'healthyVolunteers': True, 'eligibilityCriteria': "Inclusion Criteria:\n\n* Subjects are fully eligible for and have completed the AMYPRED-US (Amyloid Prediction in early stage Alzheimer's disease from acoustic and linguistic patterns of speech) study.\n\n(See https://clinicaltrials.gov/ct2/show/NCT04928976)\n\n* Subject has access to audio or written recordings created by them that are available for collection.\n* Subject consents to take part in PAST extension study.\n\nExclusion Criteria:\n\n* Subject hasn't completed the full visit day in the AMYPRED-US study."}, 'identificationModule': {'nctId': 'NCT04937959', 'acronym': 'PAST-US', 'briefTitle': "Amyloid Prediction in Early Stage Alzheimer's Disease Through Speech Phenotyping - PAST Extension", 'organization': {'class': 'INDUSTRY', 'fullName': 'Novoic Limited'}, 'officialTitle': "A Study to Evaluate the Ability of Speech- and Language-based Digital Biomarkers to Detect and Characterise Prodromal and Preclinical Alzheimer's Disease in a Clinical Setting - AMYPRED-US PAST Extension Study", 'orgStudyIdInfo': {'id': 'NOV-0110-2'}}, 'armsInterventionsModule': {'armGroups': [{'label': 'Arm 1: MCI amyloid positive', 'description': "* Meet the National Institute of Aging - Alzheimer's Association (NIA-AA) core clinical criteria (2011) for MCI due to Alzheimer's\n* Positive amyloid PET or amyloid CSF status.\n* MMSE 23-30 (inclusive)"}, {'label': 'Arm 2: MCI amyloid negative', 'description': '* Non-AD Mild Cognitive Impairment (MCI)\n* Negative amyloid PET or amyloid CSF status.\n* MMSE 23-30 (inclusive)'}, {'label': 'Arm 3: CN amyloid positive', 'description': '* Absence of a diagnosis of cognitive disorder and/or subjectively reported cognitive decline\n* Positive amyloid PET or amyloid CSF status.\n* MMSE 26-30 (inclusive)'}, {'label': 'Arm 4: CN amyloid negative', 'description': '* Absence of a diagnosis of cognitive disorder and/or subjectively reported cognitive decline\n* Negative amyloid PET or amyloid CSF status.\n* MMSE 26-30 (inclusive)'}]}, 'contactsLocationsModule': {'locations': [{'zip': '92705', 'city': 'Santa Ana', 'state': 'California', 'status': 'RECRUITING', 'country': 'United States', 'contacts': [{'name': 'Director of Clinical Operations', 'role': 'CONTACT', 'email': 'info@syrentis.com', 'phone': '714-542-3008'}], 'facility': 'Syrentis Clinical Research', 'geoPoint': {'lat': 33.74557, 'lon': -117.86783}}], 'centralContacts': [{'name': 'Head of Clinical Operations', 'role': 'CONTACT', 'email': 's2@novoic.com', 'phone': '07849522891'}], 'overallOfficials': [{'name': 'Emil Fristed, MSc', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'Novoic Ltd'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'UNDECIDED'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Novoic Limited', 'class': 'INDUSTRY'}, 'responsibleParty': {'type': 'SPONSOR'}}}}