Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}, 'conditionBrowseModule': {'meshes': [{'id': 'D003111', 'term': 'Colonic Polyps'}], 'ancestors': [{'id': 'D007417', 'term': 'Intestinal Polyps'}, {'id': 'D011127', 'term': 'Polyps'}, {'id': 'D020763', 'term': 'Pathological Conditions, Anatomical'}, {'id': 'D013568', 'term': 'Pathological Conditions, Signs and Symptoms'}]}, 'interventionBrowseModule': {'meshes': [{'id': 'D001185', 'term': 'Artificial Intelligence'}], 'ancestors': [{'id': 'D000465', 'term': 'Algorithms'}, {'id': 'D055641', 'term': 'Mathematical Concepts'}]}}, 'documentSection': {'largeDocumentModule': {'largeDocs': [{'date': '2019-10-30', 'size': 76894, 'label': 'Study Protocol and Statistical Analysis Plan', 'hasIcf': False, 'hasSap': True, 'filename': 'Prot_SAP_000.pdf', 'typeAbbrev': 'Prot_SAP', 'uploadDate': '2020-04-20T09:19', 'hasProtocol': True}, {'date': '2020-05-04', 'size': 147234, 'label': 'Informed Consent Form', 'hasIcf': True, 'hasSap': False, 'filename': 'ICF_001.pdf', 'typeAbbrev': 'ICF', 'uploadDate': '2020-05-05T05:20', 'hasProtocol': False}]}}, 'protocolSection': {'designModule': {'phases': ['NA'], 'studyType': 'INTERVENTIONAL', 'designInfo': {'allocation': 'NA', 'maskingInfo': {'masking': 'NONE'}, 'primaryPurpose': 'DIAGNOSTIC', 'interventionModel': 'SINGLE_GROUP'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 357}}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2019-10-30', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2020-04', 'completionDateStruct': {'date': '2020-04-18', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2020-05-05', 'studyFirstSubmitDate': '2020-04-20', 'studyFirstSubmitQcDate': '2020-05-05', 'lastUpdatePostDateStruct': {'date': '2020-05-07', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2020-05-07', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2020-04-18', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Diagnostic accuracy of the novel AI system compared to endoscopic diagnosis as gold standard', 'timeFrame': '4 months', 'description': 'Determination of the diagnostic accuracy of the novel AI system as second observer'}], 'secondaryOutcomes': [{'measure': "Endoscopist's polyp miss rate as number of extra AI detections", 'timeFrame': '4 months', 'description': "Determination of the AI system's precision and extra value as second observer"}]}, 'oversightModule': {'oversightHasDmc': True, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'keywords': ['Colonic polyp', 'Artificial intelligence', 'Second observer'], 'conditions': ['Polyp of Colon']}, 'descriptionModule': {'briefSummary': 'Interventional prospective multicenter study: Polyp detection by an automated endoscopic tool as second observer during routine diagnostic colonoscopy', 'detailedDescription': 'This is an investigator-initiated multicentre non-randomized prospective interventional trial to validate the performance of a novel state-of-the-art computer-aided diagnostic (CAD) tool in polyp detection implemented as second observer during routine diagnostic colonoscopy and to evaluate its feasibility in daily endoscopy. Patients referred for a screening surveillance or therapeutic colonoscopy will undergo a colonoscopy performed by an endoscopist with moderate to high adenoma detection rate (ADR \\> 20% and \\< 50%) while a second observer will follow the procedure on a bedside AI-tool to count the number of detections made by the AI system and categorize the results into positive or negative results as follows (1) true positive, (2) false negative, (3) other positive and (4) obvious false positive. When a doubtful detection is made by the AI-system, the second observer will ask to re-evaluate the indicated region. When the detection is clear, the endoscopist and second observer do not communicate. The entire procedure is recorded.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['CHILD', 'ADULT', 'OLDER_ADULT'], 'minimumAge': '16 Years', 'healthyVolunteers': True, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* \\> 18 years\n* Diagnostic or screening colonoscopy\n* Therapeutic colonoscopy\n\nExclusion Criteria:\n\n* Inability to give informed consent by the patient or legal representative\n* \\< 18 years old\n* Any contraindication for colonoscopy or biopsies of the colon\n* Uncontrolled coagulopathy\n* Confirmed diagnosis of inflammatory bowel disease\n* Short bowel or ileostomy\n* Pregnancy'}, 'identificationModule': {'nctId': 'NCT04378660', 'briefTitle': 'Artificial Intelligence (AI) Validation Study for Polyp Detection', 'organization': {'class': 'OTHER', 'fullName': 'Universitaire Ziekenhuizen KU Leuven'}, 'officialTitle': 'Artificial Intelligence Validation Trial for Polyp Detection: Pilot Study', 'orgStudyIdInfo': {'id': 's59405'}}, 'armsInterventionsModule': {'armGroups': [{'type': 'EXPERIMENTAL', 'label': 'Intervention arm', 'description': 'Colonoscopy with AI', 'interventionNames': ['Diagnostic Test: Artificial intelligence for polyp detection']}], 'interventions': [{'name': 'Artificial intelligence for polyp detection', 'type': 'DIAGNOSTIC_TEST', 'description': 'Colonoscopy enriched with artificial intelligence tool developed for polyp detection, implemented as a second observer', 'armGroupLabels': ['Intervention arm']}]}, 'contactsLocationsModule': {'locations': [{'zip': '3000', 'city': 'Leuven', 'state': 'Vlaams-Brabant', 'country': 'Belgium', 'facility': 'University Hospitals Leuven', 'geoPoint': {'lat': 50.87959, 'lon': 4.70093}}], 'overallOfficials': [{'name': 'Raf Bisschops', 'role': 'PRINCIPAL_INVESTIGATOR', 'affiliation': 'UZ Leuven'}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO', 'description': "We don't share any patient information with other researchers, nor when it's anonymized"}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'Universitaire Ziekenhuizen KU Leuven', 'class': 'OTHER'}, 'collaborators': [{'name': 'Nuovo Regina Margherita Hospital, Rome, Italy', 'class': 'UNKNOWN'}, {'name': 'Universitäts Medizin, Mainz, Germany', 'class': 'UNKNOWN'}], 'responsibleParty': {'type': 'SPONSOR'}}}}