Raw JSON
{'hasResults': False, 'derivedSection': {'miscInfoModule': {'versionHolder': '2025-12-24'}}, 'protocolSection': {'designModule': {'phases': ['NA'], 'studyType': 'INTERVENTIONAL', 'designInfo': {'allocation': 'RANDOMIZED', 'maskingInfo': {'masking': 'NONE'}, 'primaryPurpose': 'SCREENING', 'interventionModel': 'PARALLEL'}, 'enrollmentInfo': {'type': 'ACTUAL', 'count': 25732}}, 'statusModule': {'overallStatus': 'COMPLETED', 'startDateStruct': {'date': '2022-01-01', 'type': 'ACTUAL'}, 'expandedAccessInfo': {'hasExpandedAccess': False}, 'statusVerifiedDate': '2023-03', 'completionDateStruct': {'date': '2023-01-31', 'type': 'ACTUAL'}, 'lastUpdateSubmitDate': '2023-03-24', 'studyFirstSubmitDate': '2021-11-01', 'studyFirstSubmitQcDate': '2021-11-09', 'lastUpdatePostDateStruct': {'date': '2023-03-28', 'type': 'ACTUAL'}, 'studyFirstPostDateStruct': {'date': '2021-11-19', 'type': 'ACTUAL'}, 'primaryCompletionDateStruct': {'date': '2022-10-31', 'type': 'ACTUAL'}}, 'outcomesModule': {'primaryOutcomes': [{'measure': 'Proportion of taking AF treatment medications', 'timeFrame': 'Within 90 days', 'description': 'defined as use of long-term NOAC (apixaban, rivaroxaban, endoxaban, dabigatran).'}, {'measure': 'Proportion of ischemic Stroke', 'timeFrame': 'Within 90 days', 'description': "After performing an electrocardiogram, the patient's physical conditions is tracked."}], 'secondaryOutcomes': [{'measure': 'Proportion of cardiologist consultation', 'timeFrame': 'Within 90 days', 'description': 'Cardiovascular outpatient visit after discovering atrial fibrillation.'}, {'measure': 'Proportion of new-onset AF diagnosis', 'timeFrame': 'Within 90 days', 'description': 'Atrial fibrillation diagnosis in medical records'}, {'measure': 'Proportion of echocardiogram performed after ECGs', 'timeFrame': 'Within 90 days', 'description': 'After performing the ECG examination, perform the echocardiography examination.'}, {'measure': 'Proportion of new-onset heart failure', 'timeFrame': 'Within 90 days', 'description': "After performing an electrocardiogram, the patient's medical record is tracked."}, {'measure': 'Proportion of gastrointestinal bleeding', 'timeFrame': 'Within 90 days', 'description': "After performing an electrocardiogram, the patient's medical record is tracked."}, {'measure': 'Proportion of hemorrhagic stroke', 'timeFrame': 'Within 90 days', 'description': "After performing an electrocardiogram, the patient's medical record is tracked."}, {'measure': 'Proportion of all cause mortality(death)', 'timeFrame': 'Within 90 days', 'description': "After performing an electrocardiogram, the patient's survival is tracked."}]}, 'oversightModule': {'oversightHasDmc': False, 'isFdaRegulatedDrug': False, 'isFdaRegulatedDevice': False}, 'conditionsModule': {'conditions': ['Atrial Fibrillation New Onset']}, 'referencesModule': {'references': [{'pmid': '40611485', 'type': 'DERIVED', 'citation': 'Liu WT, Lin C, Lee CC, Chang CH, Fang WH, Tsai DJ, Lin WY, Hung Y, Chen KC, Lee CH, Tsai TN, Lin WS, Hung YJ, Lin SH, Tsai CS, Lin CS. Artificial Intelligence-Enabled ECGs for Atrial Fibrillation Identification and Enhanced Oral Anticoagulant Adoption: A Pragmatic Randomized Clinical Trial. J Am Heart Assoc. 2025 Jul 15;14(14):e042106. doi: 10.1161/JAHA.125.042106. Epub 2025 Jul 3.'}]}, 'descriptionModule': {'briefSummary': 'This is a randomized controlled trial (RCT) to test a novel artificial intelligence (AI)-enabled electrocardiogram (ECG)-based screening tool for improving the diagnosis and management of Atrial Fibrillation.'}, 'eligibilityModule': {'sex': 'ALL', 'stdAges': ['ADULT', 'OLDER_ADULT'], 'minimumAge': '18 Years', 'healthyVolunteers': False, 'eligibilityCriteria': 'Inclusion Criteria:\n\n* Patients in emergency department or inpatient department\n* Patients had at least 1 ECG\n* Patients cared by non-cardiologist\n\nExclusion Criteria:\n\n* Patients without history of atrial fibrillation diagnosis.\n* Patients without history of long-term NOAC or warfarin usage.\n* Patients without history of hemorrhagic stoke or ishemic stroke.\n* Patients with low eGFR (\\<30 ml/min)'}, 'identificationModule': {'nctId': 'NCT05127460', 'briefTitle': 'CARDIOLOGIST Trial: Artificial Intelligence Enabled Electrocardiogram for Atrial Fibrillation Detection', 'organization': {'class': 'OTHER', 'fullName': 'National Defense Medical Center, Taiwan'}, 'officialTitle': 'Computer-assisted Atrial Fibrillation Risk Detection In Oral-anticoagulant Use, Lowering Stroke Risk, and Optimizing Guidance With an Intelligent Screening Tool (CARDIOLOGIST): a Pragmatic Randomized Controlled Trial', 'orgStudyIdInfo': {'id': 'NDMC2021002'}}, 'armsInterventionsModule': {'armGroups': [{'type': 'EXPERIMENTAL', 'label': 'Intervention', 'description': 'Patients randomized to intervention will have access to the screening tool.', 'interventionNames': ['Other: AI-enabled ECG-based Screening Tool']}, {'type': 'NO_INTERVENTION', 'label': 'Control', 'description': 'Patients randomized to control will continue routine practice.'}], 'interventions': [{'name': 'AI-enabled ECG-based Screening Tool', 'type': 'OTHER', 'description': 'Primary care clinicians in the intervention group had access to the report, which displayed whether the AI-ECG result was positive or negative. The system will send a message to corresponding physicians if positive finding.', 'armGroupLabels': ['Intervention']}]}, 'contactsLocationsModule': {'locations': [{'zip': '114', 'city': 'Taipei', 'country': 'Taiwan', 'facility': 'National Defense Medical Center', 'geoPoint': {'lat': 25.05306, 'lon': 121.52639}}]}, 'ipdSharingStatementModule': {'ipdSharing': 'NO'}, 'sponsorCollaboratorsModule': {'leadSponsor': {'name': 'National Defense Medical Center, Taiwan', 'class': 'OTHER'}, 'responsibleParty': {'type': 'PRINCIPAL_INVESTIGATOR', 'investigatorTitle': 'Assistant Professor', 'investigatorFullName': 'Chin Lin', 'investigatorAffiliation': 'National Defense Medical Center, Taiwan'}}}}