Viewing Study NCT05614193


Ignite Creation Date: 2025-12-25 @ 1:01 AM
Ignite Modification Date: 2025-12-26 @ 1:35 PM
Study NCT ID: NCT05614193
Status: RECRUITING
Last Update Posted: 2023-02-08
First Post: 2022-11-05
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Deep Enhanced Imaging in Stroke and Vascular Neurology
Sponsor: Chinese PLA General Hospital
Organization:

Study Overview

Official Title: Deep Enhanced Imaging in Stroke and Vascular Neurology
Status: RECRUITING
Status Verified Date: 2023-02
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: To investigate the performance of enhanced computed tomography (CT) or magnetic resonance (MR) imaging by deep learning relative to conventional CT or MR imaging in brain stroke and vascular neurology. We expect that the deep enhanced imaging method can shorten the time stay in the imaging session of stroke patients, optimize the overall imaging quality and improve the patients' care in imaging session.
Detailed Description: Early diagnosis of cerebral infarction, detection of ischemic penumbra, evaluation of collateral circulation and identification of vascular lesions by imaging are critical for treatment decision and outcome improvement in cerebral stroke. Multimodal computed tomography (CT) and magnetic resonance (MR) imaging are most prevalent and accessible approaches in clinical scenarios. These two approaches are downgraded either by radiation exposure or long scanning time which may hinder the rapid treatment for patients. Deep learning has shown substantial achievements in medical imaging enhancement. The added value of deep learning method in stroke and vascular neurology has not been thoroughly validated. In this study, we aimed to investigate the performance of enhanced computed tomography (CT) or magnetic resonance (MR) imaging by deep learning relative to conventional CT or MR imaging in brain stroke and vascular neurology. We expect that the deep enhanced imaging method can shorten the time stay in the imaging session of stroke patients, optimize the overall imaging quality and improve the patients' care in imaging session.

Study Oversight

Has Oversight DMC: None
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: