Viewing Study NCT04955067


Ignite Creation Date: 2025-12-25 @ 12:37 AM
Ignite Modification Date: 2025-12-27 @ 12:50 PM
Study NCT ID: NCT04955067
Status: UNKNOWN
Last Update Posted: 2021-07-08
First Post: 2021-06-28
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Deep Learning of Anterior Talofibular Ligament: Comparison of Different Models
Sponsor: Peking University Third Hospital
Organization:

Study Overview

Official Title: Deep Learning of Anterior Talofibular Ligament: Comparison of Different Models
Status: UNKNOWN
Status Verified Date: 2021-06
Last Known Status: RECRUITING
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: The purpose of this study is to study the injury of the anterior talofibular ligament by deep learning method and compare a variety of different deep learning models to establish a deep learning method that can accurately identify and grade the injury of anterior talofibular ligament, and obtain a model with better recognition and grading effect.
Detailed Description: 1. Recognition and segmentation of anterior talofibular ligament based on DenseNet. Densenet was used to recognize the axial T2-fs image, and the image level was the most typical one. The labelimg program based on Python was used to locate the coordinates of the anterior talofibular ligament and then imported into Python for learning. All the data were divided into a training set (70%, and then 30% of the training set was selected as the verification set). The remaining 30% was used as the test set to evaluate the accuracy of model recognition. After identifying the anterior talofibular ligament, the local clipping and amplification are carried out to remove the redundant information. Finally, input the result to the next step.
2. Establishment and comparison of various deep learning models: four deep learning models were established and compared in this study, namely VGG19, AlexNet, CapsNet, and GoogleNet. The models using image fitting alone and those combining with clinical physical examination data were compared for each deep learning model. The diagnostic efficiency between models was expressed by the ROC curve, including AUC, F1 score, etc. the ROC curve was further analyzed by t-test, Delong test, and other statistical methods. In this study, the data were divided into a training set (70%, 30% in the training set as the validation set), and the remaining 30% as the test set to evaluate the classification accuracy.

Study Oversight

Has Oversight DMC: None
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: