Viewing Study NCT03577158


Ignite Creation Date: 2025-12-25 @ 12:16 AM
Ignite Modification Date: 2025-12-25 @ 10:19 PM
Study NCT ID: NCT03577158
Status: COMPLETED
Last Update Posted: 2019-08-07
First Post: 2018-06-22
Is NOT Gene Therapy: False
Has Adverse Events: False

Brief Title: SAFE-AP: Automatic Control of Blood Glucose Under Announced and Unannounced Exercise
Sponsor: Hospital Clinic of Barcelona
Organization:

Study Overview

Official Title: SAFE-AP: Automatic Control of Blood Glucose Under Announced and Unannounced Exercise
Status: COMPLETED
Status Verified Date: 2019-08
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: SAFE-AP3
Brief Summary: Achieving near-normoglycemia has been established as the main objective for most patients with diabetes. Despite growing evidence about the health benefits of regular exercise in diabetes, exercise-associated glycemic imbalance remains a challenge in subjects with type 1 diabetes (T1D) due to a higher risk of hypoglycemia.

Automatic glucose control, the so-called artificial pancreas (AP) or closed-loop system, may represent the ideal solution for reaching the therapeutic goals in diabetic patients. Intuitively, closed-loop insulin delivery may be superior to open-loop insulin delivery due to a better compensation of the variability of subcutaneous insulin absorption and the intra-subject insulin sensitivity. However, several challenges exist to effectively realize an optimal closed-loop control of blood glucose during exercise. Indeed, the physical exercise induces one of the major glucose perturbations that need to be controlled by an artificial pancreas and is currently one of the main challenges found in clinical validations of the few existing prototypes of an artificial pancreas. In particular, experiments carried out with the currently used algorithms for glucose control (the so called PID (proportional-integrative-derivative) and MPC) showed that closed-loop insulin delivery is deteriorated by exercise, increasing the risk of hypoglycemia even with pre-exercise carbohydrate ingestion when non-announcement strategies are used.

In this project, a rigorous clinical testing of a novel closed-loop controller ('artificial pancreas') will be carried out in T1D patients treated with continuous subcutaneous insulin infusion (CSII). The innovative element of the controller is a safety auxiliary feedback based on sliding mode reference conditioning (SMRC), which has been demonstrated to limit over-insulinization and the resulting hypoglycemia, reducing glycaemic variability.

Announced and unannounced exercise will be performed in T1D subjects treated with CSII, comparing the number of hypoglycemic episodes with a controller-driven insulin delivery (closed-loop study) based on continuous subcutaneous glucose monitoring (CGM).

If any glucose value \<70 mg/dL 15 gr of glucose will be provided. Moreover 15gr of glucose will be provided in AP studies when AP system recommends it.

The hypothesis is that closed loop control will provide better glycemic control, with less hypoglycemia episodes.
Detailed Description: None

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: False
Is an FDA AA801 Violation?: