Viewing Study NCT04442451


Ignite Creation Date: 2025-12-24 @ 11:48 PM
Ignite Modification Date: 2025-12-30 @ 11:02 AM
Study NCT ID: NCT04442451
Status: RECRUITING
Last Update Posted: 2025-10-08
First Post: 2020-06-18
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Mechanisms of Fatigability With Diabetes
Sponsor: University of Michigan
Organization:

Study Overview

Official Title: Mechanisms of Fatigability and the Protective Effects of Exercise in People With Diabetes
Status: RECRUITING
Status Verified Date: 2025-10
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: Pre-diabetes (Pre-D) is a precursor to type 2 diabetes (T2D) and characterized by increased exercise fatigability of lower limb muscles, that can impede exercise performance. The cause for the increased fatigability in people with Pre-D is not known. Given the profound vascular disease present in people who have had uncontrolled diabetes for several years, we will determine whether dynamic, fatiguing contractions of the lower limb muscles in people with Pre-D are limited by vascular dysfunction at multiple levels along the vascular tree including the artery, arteriole, and/or capillary. This clinical trial involves a novel exercise training regime involving blood flow restriction to the exercising limb will be used as a probe to further understand the vascular mechanisms for increased fatigability in people with Pre-D and T2D. The long-term goal is to better understand what limits exercise and functional performance in people with diabetes to help develop targeted, more effective exercise programs.
Detailed Description: The aim of the clinical trial is to determine the effectiveness of dynamic resistance exercise training coupled with blood flow restriction to improve fatigability and vascular function in people with Pre-D and T2D. People with Pre-D and T2D from Aim 1 will perform 8 weeks of dynamic unilateral resistance exercise training in which one leg is exercised with freely perfused conditions and the other leg with blood flow restriction.

We will assess fatigability, skeletal muscle metabolism, capillary density, and vascular function in people with Pre-D and T2D before and after a novel training intervention that couples dynamic resistance training with blood flow restriction to the exercising limb. This novel intervention has been shown to improve vascular function in young and older adults but has not been investigated in people with Pre-D and T2D. Endothelial function in intact large conduit arteries and arterioles isolated from skeletal muscle biopsies will be measured before and after the training intervention to assess whether the novel training improves vascular function along multiple levels of the vascular tree in people with Pre-D and T2D. Skeletal muscle blood flow through the femoral artery will be quantified with Doppler ultrasonography and skeletal muscle oxygenation will be measured with near infrared spectroscopy (NIRS) during a dynamic fatiguing knee extension exercise. We will closely match participant groups for physical activity levels, age, sex, and body mass index (BMI), because these confounders are not typically controlled for in other human studies.

Study Oversight

Has Oversight DMC: True
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: False
Is an FDA AA801 Violation?:

Secondary ID Infos

Secondary ID Type Domain Link View
5R01AG077688-03 NIH None https://reporter.nih.gov/quic… View