Viewing Study NCT05093751


Ignite Creation Date: 2025-12-24 @ 11:45 PM
Ignite Modification Date: 2025-12-25 @ 9:38 PM
Study NCT ID: NCT05093751
Status: COMPLETED
Last Update Posted: 2021-10-26
First Post: 2021-10-01
Is NOT Gene Therapy: False
Has Adverse Events: False

Brief Title: Automated Segmentation and Volumetry for Meningioma Using Deep Learning
Sponsor: Seoul National University Hospital
Organization:

Study Overview

Official Title: Automated Meningioma Segmentation and Volumetry Using a nnU-Net Based Architecture on Contrast-enhanced MRI
Status: COMPLETED
Status Verified Date: 2021-10
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: U-Net-based architectures will be applied to 500 contrast-enhanced axial MR images of different patients from a single institution after manual segmentation of meningioma, of which 50 were used for testing. Tumor volumetry after autosegmentation by trained U-Net-based architecture is final goal.
Detailed Description: U-Net-based architectures will be applied to 500 contrast-enhanced axial MR images of different patients from a single institution after manual segmentation of meningioma, of which 50 were used for testing. After preprocessing with Z-isotropification and intensity normalization of images, 3 U-Net-based networks (2D U-Net, Attention U-Net, 3D U-Net) and 3 nnU-Net-based networks (2D nnU-Net, Attention nnU-Net, 3D nnU-Net) will be trained with meningioma-segmented images. For applying to 3D networks, sagittal and coronal images will be reconstructed using axial images. After prediction, the cut-off of the probability function, which is a trade-off, will be obtained with the Gaussian Mixture Modeling algorithm using the probability density function. The voxels having a probability function higher than that will be finally predicted as meningioma. Tumor volume is calculated as the sum of the product of segmented area and thickness of axial images. For performance evaluation, dice similarity coefficient (DSC), precision, and recall will be evaluated compared with manually segmented voxels for validation datasets. The results of volumetry of each model will be compared with manual segmentation-based volume through Pearson's correlation analysis.

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: