Viewing Study NCT04957095


Ignite Creation Date: 2025-12-24 @ 1:41 PM
Ignite Modification Date: 2026-01-01 @ 9:42 AM
Study NCT ID: NCT04957095
Status: RECRUITING
Last Update Posted: 2025-08-14
First Post: 2021-06-29
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Motor Network Physiology
Sponsor: University of Texas Southwestern Medical Center
Organization:

Study Overview

Official Title: Motor Network Physiology Characterization During Deep Brain Stimulation Surgery
Status: RECRUITING
Status Verified Date: 2025-08
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: The brain networks controlling movement are complex, involving multiple areas of the brain. Some neurological disorders, like Parkinson's disease (PD) and essential tremor (ET), cause abnormalities in these brain networks. Deep brain stimulation is a treatment that is used to treat these types of neurological diseases and is thought to help patients by modulating brain networks responsible for movement. Levodopa medication is also used to modulate this brain networks in patients with PD. The overall objective is to develop a unified theory of basal ganglia thalamocortical (BGTC) circuit dynamics that accounts for disease symptomatology, movement, and their inter-relationship. The underlying hypothesis, is that the rigidity and bradykinesia of PD are fundamentally related to excessive functional coupling across nodes in the BGTC motor circuit impeding effective information flow. In this research, the investigator will take advantage of the unique opportunity provided by awake deep brain stimulation surgery to learn more about how the brain functions in a diseased state and how deep brain stimulation changes these networks to make movement more normal. The investigator will simultaneously assess cortical and subcortical electrophysiology in relation to clinical symptoms and behavioral measures and in response to deep brain stimulation, cortical stimulation, and pharmacologic therapy in patients undergoing Deep Brain Stimulation (DBS) implantation surgery.
Detailed Description: None

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: False
Is an FDA AA801 Violation?:

Secondary ID Infos

Secondary ID Type Domain Link View
1R01NS097782-01A1 NIH None https://reporter.nih.gov/quic… View