Viewing Study NCT00890006


Ignite Creation Date: 2025-12-26 @ 2:41 PM
Ignite Modification Date: 2025-12-26 @ 2:41 PM
Study NCT ID: NCT00890006
Status: ACTIVE_NOT_RECRUITING
Last Update Posted: 2025-02-10
First Post: 2009-04-27
Is NOT Gene Therapy: False
Has Adverse Events: False

Brief Title: Advanced Imaging for Radiotherapy Treatment Planning and Guidance for Low-Intermediate Risk Prostate Cancer (Margin)
Sponsor: University Health Network, Toronto
Organization:

Study Overview

Official Title: Low-Intermediate Risk Prostate Cancer: Improving Acute Toxicity Outcomes of Radiotherapy With the Integration of Advanced Imaging for Treatment Planning and Guidance
Status: ACTIVE_NOT_RECRUITING
Status Verified Date: 2025-02
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: The integration of magnetic resonance imaging (MRI) in the treatment planning process for prostate cancer will reduce uncertainties in delineation of the prostate gland, and will enable delineation of the urethra, penile bulb, and internal pudendal artery. The integration of daily cone-beam computed tomography (CBCT) will markedly reduce set-up uncertainties, thereby reducing the minimum planning target volume (PTV) margin. By combining MRI simulation and daily CBCT, and by adapting radiation delivery accordingly, the investigators will reduce dose delivered to the rectum, bladder, urethra, and erectile structures. In this study, the investigators seek to determine whether this dose reduction translates to improved patient outcomes. In a prospective, 2-stage design, up to 190 patients will be enrolled. In the first stage, advanced imaging will be integrated without altering dose planning techniques. Stage 2 will reduce dose delivered to normal tissues, and will collect toxicity outcome measures. This clinical trial will be conducted over 3 years.
Detailed Description: Advances in medical imaging, and their integration in the treatment planning and daily guidance of radiotherapy, stand to improve the therapeutic ratio. Improved imaging can reduce uncertainties by 1) improving the accuracy and reproducibility of organ or tumor delineation, and 2) guiding and adapting delivery to account for organ motion. This paradigm has been widely accepted in the radiotherapy community, and much research has addressed the technical and dosimetric aspects for a sound clinical implementation. However, direct evidence of a clinical translation to improved patient outcomes is limited. In this study, we hypothesize that the integration of advanced imaging for treatment planning and guidance will safely enable a reduction of dose delivered to normal tissues, and will improve toxicity and quality of life (QOL) outcomes in patients receiving external beam radiotherapy for low or intermediate risk prostate cancer.

Study Oversight

Has Oversight DMC: True
Is a FDA Regulated Drug?: None
Is a FDA Regulated Device?: None
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: