Viewing Study NCT06101069


Ignite Creation Date: 2025-12-24 @ 10:46 PM
Ignite Modification Date: 2025-12-25 @ 8:16 PM
Study NCT ID: NCT06101069
Status: RECRUITING
Last Update Posted: 2025-06-06
First Post: 2023-10-20
Is NOT Gene Therapy: False
Has Adverse Events: False

Brief Title: Development of MRF for Characterization of Brain Tumors After Radiotherapy
Sponsor: Case Comprehensive Cancer Center
Organization:

Study Overview

Official Title: Development of Magnetic Resonance Fingerprinting for Characterization of Brain Tumors After Radiotherapy
Status: RECRUITING
Status Verified Date: 2025-06
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: The purpose of this study is to discover the potential convenience and ease of using a Magnetic Resonance Imaging (MRI) technique, named Magnetic Resonance Fingerprinting (or MRF), to achieve high-quality images within a short scan time of 5 min for viewing the entire brain. This is an advanced quantitative assessment of brain tissues. This method is being applied with IVIM MRI to be able to tell the difference between a brain with radiation necrosis and a brain with tumor recurrence. Participants will consist of individuals who have received radiation therapy in the past and were diagnosed with radiation necrosis, individuals with recurrent tumors, individuals with previously untreated tumors, and healthy individuals who have no brain diseases and have not had radiation treatment to the brain. Participants will undergo an MRI scan at a one-time research study visit; no extra tests or procedures will be required for this research study.

The primary objectives of this study are:

* To demonstrate the clinical feasibility of combining MRF with state-of-the-art parallel imaging techniques to achieve high-resolution quantitative imaging within a reasonable scan time of 5 min for whole brain coverage.
* To apply the developed quantitative approach in combination with IVIM MRI for differentiation of tumor recurrence and radiation necrosis.
* To investigate the effect of radiation dose on the development of radiation necrosis and tumor recurrence.
Detailed Description: Although Stereotactic radiosurgery (SRS) is utilized as an effective treatment method, after several months to over 1 year following SRS, 33% of treated brain metastases increase in size on imaging, which is suspicious for tumor progression. However, based on findings in follow-up biopsies, the majority of newly detected metastases on imaging are radiation treatment effects instead of active tumor. So far, the only gold standard to differentiate active tumor and radiation necrosis is surgical resection for pathologic confirmation, which is invasive, not favored for poor surgical candidates, and should be avoided in cases of necrosis. The existing clinical imaging techniques have poor sensitivity or specificity in differentiating these two types of tissues. Recently, a novel MRI data acquisition approach, namely MR Fingerprinting (MRF), has been introduced for the simultaneous measurement of multiple important parameters in a single MRI scan. In addition, quantitative diffusion MRI, such as the intravoxel incoherent motion (IVIM) technique, can provide a noninvasive and powerful tool to quantify microstructural information by measuring water diffusion and microcirculation perfusion in vivo. This study aims to demonstrate the clinical feasibility of combining MRF with state-of-the-art parallel imaging techniques to achieve high-resolution quantitative imaging within a reasonable scan time of 5 min for whole brain coverage. It also aims to apply the developed quantitative approach in combination with IVIM MRI for the differentiation of tumor recurrence and radiation necrosis. The multi-parametric quantitative measures developed in this study could establish a new fundamental biomarker for the diagnosis and monitoring of brain tumors.

Study Oversight

Has Oversight DMC: True
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: