Viewing Study NCT04300504


Ignite Creation Date: 2025-12-24 @ 7:51 PM
Ignite Modification Date: 2025-12-25 @ 5:27 PM
Study NCT ID: NCT04300504
Status: COMPLETED
Last Update Posted: 2023-11-18
First Post: 2019-12-19
Is NOT Gene Therapy: False
Has Adverse Events: False

Brief Title: Muscle in Obesity: Imaging, Function and microRNA
Sponsor: Sheffield Teaching Hospitals NHS Foundation Trust
Organization:

Study Overview

Official Title: Muscle in Obesity: Imaging, Function and microRNA
Status: COMPLETED
Status Verified Date: 2023-11
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: Growing evidence suggests that dynapenic abdominal obesity is associated with a greater risk of falls, functional disability and hospitalisation compared to those with dynapenia, obesity or neither phenotype. Understanding the pathogenesis underlying this phenotype has the potential to inform potential treatment strategies.

MicroRNAs can act as messengers at the cellular level to promote or block processes for muscle growth and repair, amongst other things. There is evidence that ageing changes microRNA levels in the muscle and that these changes may result in reduced muscle quality and quantity. However, it is not known whether being obese can change microRNA levels in muscle and how this relates to physical performance.

The aim of this study is to investigate the effect of dynapenic abdominal obesity on microRNA levels in serum and muscle quality and quantity in the legs of older women.

This is an observational, cross-sectional study. The investigators will recruit 4 groups of older women: normal weight, normal weight with dynapenia, obese and obese with dynapenia. The investigators will measure the microRNA levels in serum. The investigators will measure the quantity and fat content of muscle in the legs using magnetic resonance imaging. Muscle strength, fatigue and balance will be measured using gait (walking) analysis, balance tests, and a machine designed to measure leg strength and fatigue.

The investigators will measure and compare microRNA levels between groups. The investigators will use databases and computer programmes to look at all of the microRNAs which are different between groups and see how they affect the muscle. The investigators will compare muscle strength, size and fatigue between groups. The investigators will explore relationships of muscle quantity and quality measures with microRNA changes in the muscle. This approach will allow the investigators to understand how obesity affects the microRNA profile of muscle and whether this translates into impairment of function and mobility.
Detailed Description: None

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: