Viewing Study NCT01179503


Ignite Creation Date: 2025-12-24 @ 7:38 PM
Ignite Modification Date: 2025-12-28 @ 4:09 PM
Study NCT ID: NCT01179503
Status: COMPLETED
Last Update Posted: 2018-08-17
First Post: 2010-08-10
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Vitamin D Supplementation and Physical Function in Older Adults
Sponsor: Wake Forest University Health Sciences
Organization:

Study Overview

Official Title: Vitamin D Supplementation, Skeletal Muscle Gene Expression, and Physical Performance in Older Adults
Status: COMPLETED
Status Verified Date: 2018-08
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: A growing body of evidence suggests that vitamin D status is important in biologic processes involved in the maintenance of physical function. To advance the investigators understanding of the role of vitamin D in physical function, the investigators will conduct a feasibility pilot study to collect key information to help design a full-scale randomized trial to determine whether vitamin D supplementation will delay declines in physical function. The primary goals of the pilot study are to determine cost-effective strategies for identifying persons at high risk for functional decline with insufficient vitamin D levels, determine the serum vitamin D response to a vitamin D supplementation regimen designed to attain sufficient vitamin D levels, and provide preliminary data of key functional measures (balance, physical performance and muscle power) for the future larger study design. A secondary goal is to begin to examine potential mechanisms by which vitamin D supplementation may enhance physical performance by exploring the effects of vitamin D supplementation on changes in skeletal muscle gene expression.
Detailed Description: A growing body of evidence suggests that vitamin D status is important in biologic processes involved in the maintenance of physical function. However, whether remediation of vitamin D insufficiency will improve physical function and the potential mechanisms involved are unclear. Previous vitamin D supplementation trials have produced mixed results with respect to physical function; however, most trials did not specifically recruit individuals who were vitamin D insufficient nor is the potential mechanism of action understood well enough to appropriately select those individuals most likely to benefit. To advance our understanding of the role of vitamin D in physical function, the investigators will conduct a feasibility pilot study to collect key information to help design a full-scale randomized trial to determine whether vitamin D supplementation will delay declines in physical function. The primary goals of the pilot study are to determine cost-effective strategies for identifying persons at high risk for functional decline with insufficient vitamin D levels, determine the serum vitamin D response to a vitamin D supplementation regimen designed to attain sufficient vitamin D levels, and provide preliminary data of key functional measures (balance, short physical performance battery (SBBP) and muscle power) for the future larger study design. A secondary goal is to begin to examine potential mechanisms by which vitamin D supplementation may enhance physical performance and muscle contractility by exploring the effects of vitamin D supplementation on changes in skeletal muscle gene expression using microarrays.

Study Oversight

Has Oversight DMC: True
Is a FDA Regulated Drug?: True
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?:

Secondary ID Infos

Secondary ID Type Domain Link View
R01AG029364-03S1 NIH None https://reporter.nih.gov/quic… View