Viewing Study NCT06061003


Ignite Creation Date: 2025-12-24 @ 7:18 PM
Ignite Modification Date: 2025-12-28 @ 12:48 PM
Study NCT ID: NCT06061003
Status: RECRUITING
Last Update Posted: 2025-05-28
First Post: 2023-09-24
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: 3D Resin Printed Fracture Models for Anatomy Education
Sponsor: Abant Izzet Baysal University
Organization:

Study Overview

Official Title: Can High Resolution 3D Resin Printed Models be Used in Clinical Anatomy Education for Fracture Rehabilitation
Status: RECRUITING
Status Verified Date: 2025-05
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: Resin printing is an emerging technology with a wide array of applications. This research seeks to assess the practicality of incorporating 3D resin printed models into anatomy education while investigating how fractured models impact students' decision-making and quiz scores.
Detailed Description: Over the past decade, 3D printing has become increasingly accessible and cost-effective, offering systems and materials suitable for home use. 3D printing is a technology that streamlines production by translating computer-generated models into physical objects, layer by layer. In comparison to other tissue engineering and rapid prototyping methods, 3D printing boasts numerous advantages, such as exceptional precision, rapid production, cost-effectiveness, and seamless integration. Utilizing 3D models can significantly enhance the comprehension of intricate structures for medical professionals and students alike. Common materials used in 3D printing include robust nylon, aluminum, gypsum, textile components, polylactic acid, and resin. Among these, photosensitive resin stands out, as it enables the creation of higher-quality, more intricate structures that closely resemble real tissues, offering a smoother finish devoid of visible raw material textures.

This study's primary objective was to assess the suitability of tissues produced by a 3D resin printer in anatomy education, with the aim of enhancing hands-on training through direct manipulation of fractured bone models.

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: