Viewing Study NCT06025305



Ignite Creation Date: 2024-05-06 @ 7:29 PM
Last Modification Date: 2024-10-26 @ 3:07 PM
Study NCT ID: NCT06025305
Status: ENROLLING_BY_INVITATION
Last Update Posted: 2023-10-18
First Post: 2023-08-30

Brief Title: Identifying Vulnerable CoronAry PLaqUes With Artificial IntElligence-assisted CT Angiography
Sponsor: Jinling Hospital China
Organization: Jinling Hospital China

Study Overview

Official Title: Development and Validation of Multi-scale Deep Neural Network-Based CT Intelligent Diagnosis System for Coronary Vulnerable Plaques A Chinese Multicenter Study
Status: ENROLLING_BY_INVITATION
Status Verified Date: 2023-10
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: VALUE
Brief Summary: The goal of this observational study is to develop an automatic whole-process AI model to detect quantify and characterize plaques using coronary CT angiography in coronary artery disease patients The main questions it aims to answer are

1 Whether the AI model enables to detect and quantify coronary plaques compared with intravascular ultrasound or expert readers
2 Whether the AI model enables to identify vulnerable plaques using intravascular ultrasound or optical coherence tomography as the reference standard
3 Whether the AI model enables to predict future adverse cardiac events in a large cohort of 10000 patients with non-obstructive CAD
Detailed Description: Coronary artery disease CAD remains the leading cause of death worldwide Atherosclerotic plaques play a pivotal role in CAD-related patient mortality Thus the detection quantification and characterization of coronary plaques are clinically significant for early prevention and interventions for CAD

Coronary CT angiography CCTA has emerged as a robust noninvasive tool for the evaluation of CAD In clinical practice the coronary plaque assessment is performed by a time-consuming manual process dependent on the clinicians experience and subjective visual interpretation With the development of artificial intelligence many automatic computer-aided methods have been proposed to post-process the CCTA images However previously proposed algorithms of plaque evaluation were not developed based on intravascular ultrasound IVUS or optical coherence tomography OCT which were regarded as the gold reference for plaque evaluation Thus we aimed to develop a deep learning model in a whole-process automatic and intelligent system on CCTA to detect quantify and characterize plaques using IVUS or OCT as reference standard Then we will work on the validation in different clinical scenarios 1 Validation of the accuracy of the new deep learning model 2 Prognosis of the model in different populations with CAD

The main questions it aims to answer are

1 Whether the AI model enables to detect and quantify coronary plaques compared with intravascular ultrasound or expert readers
2 Whether the AI model enables to identify vulnerable plaques using IVUS or OCT as the reference standard
3 Whether the AI model enables to predict future adverse cardiac events in a large cohort of 10000 patients with non-obstructive coronary artery disease China CT-FFR study 2

Study Oversight

Has Oversight DMC: None
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: None