Viewing Study NCT04861350


Ignite Creation Date: 2025-12-24 @ 5:17 PM
Ignite Modification Date: 2025-12-29 @ 2:57 AM
Study NCT ID: NCT04861350
Status: COMPLETED
Last Update Posted: 2023-11-14
First Post: 2021-04-13
Is Gene Therapy: True
Has Adverse Events: False

Brief Title: Lumbopelvic Movement Control: Effect of Injury History, and the Role of Cortical Control and Its Practical Application 2
Sponsor: National Yang Ming Chiao Tung University
Organization:

Study Overview

Official Title: Restoration of Lumbopelvic Movement Control: Effect of Injury History, and the Role of Cortical Control and Its Practical Application(2)
Status: COMPLETED
Status Verified Date: 2023-11
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: Hip motor control ability is an important parameter for preventing sport injuries in lower limbs, and the training of hip motor control can enhance the lower extremity movement performance. Previous studies have demonstrated the benefits of motor imagery with action observation (AOMI) on motor control and muscle strength improvements, which also revealed that AOMI combined with physical training (AOMI-PT) can lead to better outcomes than physical training (PT) alone. Besides, monitoring the neurophysiological changes of brain activation and the functional connection to the peripheral muscular activation after training helps to understanding the mechanisms on the training effects.

Therefore, the aim of this study is to compare (1) the cortical control mechanisms between 3 types of motor control training strategies; and (2) the effects of 3 types of motor control training on hip motor control performance in healthy subjects.
Detailed Description: Hip motor control ability is an important parameter for preventing sport injuries in lower limbs, and the training of hip motor control can enhance the lower extremity movement performance. Previous studies have demonstrated the benefits of motor imagery with action observation (AOMI) on motor control and muscle strength improvements, which also revealed that AOMI combined with physical training (AOMI-PT) can lead to better outcomes than physical training (PT) alone. Besides, monitoring the neurophysiological changes of brain activation and the functional connection to the peripheral muscular activation after training helps to understanding the mechanisms on the training effects.

Therefore, the aim of this study is to compare (1) the cortical control mechanisms between 3 types of motor control training strategies; and (2) the effects of 3 types of motor control training on hip motor control performance in healthy subjects.

The investigators will recruit 45 healthy subjects and compare the effect of three types of motor control training (physical training, motor imagery with action observation, physical training combined motor imagery with action observation) on Y balance test performance, cortico-muscular coherence (CMC), and task-related spectral power (TRSP) changes. Due to only few studies about the issue, we will recruit extra 15 healthy athletes for pilot study to investigate the reliability of the research measurements and refine the protocols.

Chi squared test is used to examine the group differences such as gender, dominant side and activity level. The 2-way mixed analysis of variance (ANOVA) will be used to compare the intervention effect on motor control test and CMC between groups. One-way repeated measures ANOVA will be used to investigate the neurophysiological changes on brain activation during AOMI training, and the changes of AOMI-PT and PT group will be compared by independent t-test. The alpha level was set at 0.05.

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: