Viewing Study NCT06353750


Ignite Creation Date: 2025-12-24 @ 4:45 PM
Ignite Modification Date: 2026-01-04 @ 12:54 PM
Study NCT ID: NCT06353750
Status: NOT_YET_RECRUITING
Last Update Posted: 2024-04-09
First Post: 2024-04-02
Is Gene Therapy: True
Has Adverse Events: False

Brief Title: Intracellular Magnesium and Heart Failure
Sponsor: University of Oxford
Organization:

Study Overview

Official Title: Exploring Intramyocellular Magnesium Augmentation: Implications for Myocardial and Skeletal Muscle Metabolism in Individuals With Heart Failure With Preserved Ejection Fraction
Status: NOT_YET_RECRUITING
Status Verified Date: 2024-03
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: Low magnesium levels are surprisingly common in those with a heart condition known as HFpEF, where the heart pumps well but is too rigid to fill properly with blood. While routine blood tests can check magnesium levels, they don't tell us how much magnesium is actually inside the heart and muscle cells, where it's vital for energy and overall function. Our research aims to get a clearer picture by looking directly at the magnesium inside these cells and understanding its role in the body's energy production and usage. We're also interested in how magnesium levels affect symptoms and the body's handling of sugar. We're using advanced medical imaging techniques, like heart magnetic resonance imaging (MRI) and other heart and muscle function tests, at rest and when the heart is working hard to help answer these questions. We'll compare the magnesium levels inside the cells before and after giving a supplement of magnesium to see if this can make a difference in how the heart and muscles work.
Detailed Description: Hypomagnesaemia is prevalent among patients suffering from heart failure with preserved ejection fraction (HFpEF), and in those with predisposing risk factors such as obesity and diabetes. The intricate link between hypomagnesaemia and the pathophysiological processes of HFpEF remains to be fully elucidated. However, its notable prevalence suggests a significant role in the onset and advancement of the disease. Serum magnesium (S-Mg) is commonly used to evaluate Mg status, however, it does not accurately reflect true intracellular Mg concentrations (\[Mg2+\]i), where this essential ion exerts its beneficial effects. Thus, previous literature lacks a thorough evaluation of \[Mg2+\]i in HFpEF, and specifically the potential impact of Mg replete physiology.

The research hypothesis is that \[Mg2+\]i is related to myocardial and skeletal muscle (SM) energetics and performance in patients with HFpEF. The study aims to explore the role of \[Mg2+\]i at a functional and cellular level in cardiac and SM, symptomatology, and insulin sensitivity; comparing a HFpEF population with healthy and matched controls.

Using the chemical shift difference in the resonance frequencies of the α- and β- phosphate resonances in magnetic resonance spectroscopy (MRS), \[Mg2+\]i will be measured, comparing it to S-Mg. Blood samples for cardiac biomarkers, electrolytes, and markers of HFpEF risk factors (such as lipid profile, HbA1C and TSH) will be taken and a calf leg raise performed. Advanced imaging techniques at rest and stress including cardiac magnetic resonance imaging (CMR), MRS and echocardiography will be performed. MRS measurements include cellular energetics (Phosphocreatine \[PCr\]/ATP), rate of myocardial ATP delivery (CK flux and KfCK) and skeletal muscle energetics (PCr recovery Tau). At two time points post-Mg augmentation (immediate and delayed \[7-15 days\]), investigations will be repeated.

This study aspires to quantify \[Mg2+\]i in the HFpEF population compared with healthy and matched controls, juxtapose its levels with S-Mg, and examine its significance in the pathophysiology, functional and cellular performance, and symptom presentation of HFpEF. The study aims to recruit 45 individuals with HFpEF, 20 healthy controls and 20 age-and sex-matched individuals over a 2-year period.

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: