Viewing Study NCT03119818


Ignite Creation Date: 2025-12-25 @ 4:41 AM
Ignite Modification Date: 2025-12-26 @ 3:42 AM
Study NCT ID: NCT03119818
Status: COMPLETED
Last Update Posted: 2025-12-19
First Post: 2017-04-11
Is NOT Gene Therapy: False
Has Adverse Events: False

Brief Title: Intracellular Phosphate Concentration Evolution During Hemodialysis by MR Spectroscopy
Sponsor: Hospices Civils de Lyon
Organization:

Study Overview

Official Title: Intracellular Phosphate and Adenosine Triphosphate (ATP) Concentration Evolution by Magnetic Resonance (MR) Spectroscopy in Patients During Hemodialysis
Status: COMPLETED
Status Verified Date: 2025-12
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: CIPHEMO
Brief Summary: End-stage renal disease is associated with hyperphosphatemia due to a decrease of renal phosphate excretion. This hyperphosphatemia is associated with an increase of cardiovascular risk and mortality. Thus, three therapeutic options have been developed: dietary restriction, administration of phosphate binders and phosphorus clearance by hemodialysis (HD).

During a standard HD session, around 600 to 700mg phosphate is removed from the plasma, whereas it contains only 90 mg inorganic phosphate (Pi); 85% of phosphate is stored in bones and teeth in hydroxyapatite form, 14% is stored in the intracellular space (90% organic phosphate and 10% Pi), and 1% remains in the extracellular space.

Currently, the source of Pi cleared during HD remains to be determined. Phosphorus (31P) magnetic resonance spectroscopy allows reliable, dynamic and non-invasive measurements of phosphate intracellular concentration. The investigator's team recently published data obtained in anephric pigs, suggesting that phosphate intracellular concentration increases during a HD session. In parallel, we showed that ATP intracellular concentration decreased. These results suggest that the source of Pi cleared during HD could be located inside the cell.

In this study, investigators will measure intracellular phosphate and ATP concentrations and intracellular potential of hydrogen (pH) evolution during hemodialysis in 12 patients suffering from end-stage renal disease by MR spectroscopy.

If these results were confirmed in humans, it could explain, at least in part, HD intolerance in some patients and would lead to modify therapeutic approaches of hyperphosphatemia, for example, by modifying HD sessions time.
Detailed Description: None

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: