Viewing Study NCT04337502


Ignite Creation Date: 2025-12-25 @ 3:52 AM
Ignite Modification Date: 2025-12-26 @ 2:40 AM
Study NCT ID: NCT04337502
Status: COMPLETED
Last Update Posted: 2020-04-07
First Post: 2020-04-06
Is NOT Gene Therapy: False
Has Adverse Events: False

Brief Title: Clinical and Radiomic Model of COVID-19
Sponsor: Maastricht University
Organization:

Study Overview

Official Title: A Clinical and Radiological Model to Predict the Prognosis for COVID-19 Patients
Status: COMPLETED
Status Verified Date: 2020-03
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: To develop and validate a machine-learning model based on clinical, laboratory, and radiological characteristics alone or combination of COVID-19 patients to facilitate risk Assessment before and after symptoms and triage (home, hospitalization inward or ICU).
Detailed Description: In December 2019, a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; earlier named as 2019-nCoV), emerged in Wuhan, China. The diseases caused by SARS-CoV-2 is COVID-19. As of March 8, 2020, more than 100 000 COVID-19 patients have been reported globally (more than 80 000 cases in China, more than 20 000 in other countries), and 3 600 patients (3 100 in China, 500 outside of China) have died. The outbreak of COVID-19 constitutes a Public Health Emergency of International Concern.

Among COVID-19 patients, around 80% are mild (non-severe) illness patients, who usually heal within two weeks. However, another 20% of patients may aggravate into a severe or critical illness which results in a longer hospital stay, and the mortality rate for such patients is 13.4%. Therefore, inchoate identification of the high-risk severe patients is extremely important for patient management and medical resource allocation. General quarantine and symptomatic treatment can be used for most non-severe patients, while a higher level of care and green channel to the intensive care unit (ICU) are helpful for severe patients. Previous studies have summarized the clinical and radiological characteristics of severe COVID-19 patients, while which factors are important predictors is still unclear.

Machine learning is a branch of artificial intelligence that enables us to learn knowledge and potential laws from the given data and to build a model for solving problems as human needs. In recent years, machine learning has been developed as a novel tool to analyze large amounts of data from medical records or images. Previous modeling studies focused on forecasting the potential international spread of COVID-19.

Therefore, our purpose is to develop and validate a machine-learning model based on clinical, laboratory, and radiological characteristics alone or combination of COVID-19 patients in the early stage without severe illness from multiple centers for the prediction of severe (or critical) illness in the following hospitalization to facilitate risk Assessment before and after symptoms and triage (home, hospitalization inward or ICU).

Study Oversight

Has Oversight DMC: False
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: None
Is an FDA AA801 Violation?: