Viewing Study NCT06994260


Ignite Creation Date: 2025-12-25 @ 2:03 AM
Ignite Modification Date: 2025-12-26 @ 12:28 AM
Study NCT ID: NCT06994260
Status: NOT_YET_RECRUITING
Last Update Posted: 2025-06-22
First Post: 2025-05-19
Is NOT Gene Therapy: True
Has Adverse Events: False

Brief Title: Diagnostic Imaging of Vascular Malformations Using MSOT and ULM
Sponsor: University Hospital Erlangen
Organization:

Study Overview

Official Title: Multispectral Optoacoustic Tomography (MSOT) and Ultrasound Localization Microscopy (ULM) as Diagnostic Imaging for Lymphatic, Venous and Arteriovenous Malformations
Status: NOT_YET_RECRUITING
Status Verified Date: 2025-06
Last Known Status: None
Delayed Posting: No
If Stopped, Why?: Not Stopped
Has Expanded Access: False
If Expanded Access, NCT#: N/A
Has Expanded Access, NCT# Status: N/A
Acronym: None
Brief Summary: This clinical study evaluates the efficacy and accuracy of Multispectral Optoacoustic Tomography (MSOT) and Ultrasound Localization Microscopy (ULM) for imaging and diagnosing vascular malformations (venous, arteriovenous, lymphatic). The study aims to enhance diagnostic precision and improve treatment planning through advanced non-invasive imaging techniques.
Detailed Description: This study aims to investigate whether Multispectral Optoacoustic Tomography (MSOT) and Ultrasound Localization Microscopy (ULM) can accurately differentiate between lymphatic, venous, and arteriovenous vascular malformations. MSOT can determine oxygen levels based on the expected low oxygen content in venous blood, high oxygen content in arterial blood, and the absence of oxygen in lymphatic fluid. Additionally, ULM, utilizing microbubbles, measures blood flow velocities, which may help identify and distinguish these malformations or their mixed forms.

To date, vascular malformations of blood and lymphatic vessels are commonly diagnosed using cross-sectional imaging techniques such as ultrasound, computed tomography (CT), or magnetic resonance imaging (MRI). MSOT introduces a novel, non-invasive diagnostic approach that enables the assessment of oxygenated hemoglobin concentrations and oxygen levels in blood and tissue. Previous studies (e.g., MSOT\_IC, MSOT\_PI) demonstrated the capability of MSOT to visualize muscle perfusion in patients with peripheral arterial disease. Moreover, it has successfully identified muscle structures and the clinical severity of Duchenne muscular dystrophy by detecting endogenous biomarkers like collagen and lipids.

The objective of this study is to utilize MSOT and ULM as supplementary diagnostic tools to conventional imaging methods to accurately identify and distinguish between venous, arteriovenous, and lymphatic malformations in patients. This approach has the potential to reduce exposure to ionizing radiation from CT scans and minimize the need for resource-intensive MRI procedures in the future.

Study Oversight

Has Oversight DMC: None
Is a FDA Regulated Drug?: False
Is a FDA Regulated Device?: False
Is an Unapproved Device?: None
Is a PPSD?: None
Is a US Export?: False
Is an FDA AA801 Violation?: