Description Module

Description Module

The Description Module contains narrative descriptions of the clinical trial, including a brief summary and detailed description. These descriptions provide important information about the study's purpose, methodology, and key details in language accessible to both researchers and the general public.

Description Module path is as follows:

Study -> Protocol Section -> Description Module

Description Module


Ignite Creation Date: 2025-12-25 @ 12:40 AM
Ignite Modification Date: 2025-12-25 @ 12:40 AM
NCT ID: NCT05560867
Brief Summary: Stroke is a leading cause of disability that often impairs arm function and activities of daily living. The costs of rehabilitation are significant and practical constraints often limit therapy to the first few months after stroke. However many studies have shown that patients in the later stages post-stroke can still continue to benefit from rehabilitation. Technology-assisted therapy may offer a means to efficiently provide ongoing therapies to patients in the later stages (\>6 months) post-stroke. This study will determine which patients are best able to benefit from this therapy approach, and will also expand our knowledge of which brain structures need to be intact for patients to benefit from technology-assisted training. The results of this study will help to improve rehabilitation and quality of life for disabled Americans.
Detailed Description: Study Description: This study will investigate the neural mechanisms of technology-assisted-training for post-stroke hemiparesis by using functional near-infrared-spectroscopy (fNIRS). Patients with hemiparesis affecting the arm will be brought in for 3 weeks of technology-assisted-training while having fNIRS recordings of their brain activity. Analysis of these brain activation patterns will help determine what areas of the brain are necessary to respond to this type of training. Objectives: 1) to investigate brain network activity changes that occur during technology-assisted-training and 2) to determine the baseline residual brain network connectivity required for patients to respond to robot-assisted-training. Endpoints: The study will evaluate increases in cortical connectivity between bilateral primary motor areas, angular gyrus and parietal operculum to test the hypothesis that cortical connectivity in these areas will positively correlate with improvement in technology-assisted-assessments. The study will also assess baseline connectivity of the angular gyrus and parietal operculum to sensorimotor networks to test the hypothesis that cortical connectivity in these areas will predict reductions in arm motor impairments that occur with technology-assisted-training. Study Population: Patients of either gender with chronic (at least 6 months or more) hemiparesis of the arm caused by a single unilateral stroke will be recruited from Baltimore city and the surrounding counties.
Study: NCT05560867
Study Brief:
Protocol Section: NCT05560867