Description Module

Description Module

The Description Module contains narrative descriptions of the clinical trial, including a brief summary and detailed description. These descriptions provide important information about the study's purpose, methodology, and key details in language accessible to both researchers and the general public.

Description Module path is as follows:

Study -> Protocol Section -> Description Module

Description Module


Ignite Creation Date: 2025-12-24 @ 4:54 PM
Ignite Modification Date: 2025-12-24 @ 4:54 PM
NCT ID: NCT05179850
Brief Summary: The aim of this study was to evaluate the diagnostic efficacy of computer aided diagnostic tool for retroperitoneal tumor using machine learning and deep learning techniques on computed tomography images in children.
Detailed Description: The retroperitoneal space extends from the lumbar region to the pelvic region and houses vital structures such as the kidney, the ureter, the adrenal glands, the pancreas, the aorta and its branches, the inferior vena cava and its tributaries, lymph nodes, and loose connective tissue meshwork along with fat. This space thus allows the silent growth of primary and metastatic tumors, such that clinical features appear often too late. The therapeutic regimen differs on various types of retroperitoneal tumor in children. It is damaging for pediatric patients to acquire histological specimens through invasive procedures. Hence, an urgent evaluation is absolutely necessary for preoperative diagnosis in such cases via noninvasive approaches. This study is a retrospective-prospective design by West China Hospital, Sichuan University, including clinical data and radiological images. A retrospective database was enrolled for patients with definite histological diagnosis and available computed tomography images from June 2010 and December 2020. The investigators have constructed deep learning and machine learning radiomics diagnostic models on this retrospective cohort and validated it internally. A prospective cohort would recruit infantile patients diagnosed as retroperitoneal tumor since January 2021. The proposed deep learning model would also be validated in this prospective cohort externally. The aim of this study was to evaluate the diagnostic efficacy of computer aided diagnostic tool for retroperitoneal tumor using machine learning and deep learning techniques on computed tomography images in children.
Study: NCT05179850
Study Brief:
Protocol Section: NCT05179850